
Open Message Queue 4.5
Technical Overview

Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.

Part No: 821–2484–12
July 2011

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110722@25097

Contents

Preface ...11

1 Messaging Systems: An Introduction ..19
Message-Oriented Middleware (MOM) ... 19
JMS as a MOM Standard .. 24

JMS Messaging Objects and Domains ... 25
Administered Objects .. 26

Message Queue: Elements and Features ... 28
The Message Queue Service .. 29
Message Queue as an Enabling Technology ... 34
Message Queue Feature Summary ... 35

2 Client Programming Model ...37
Messaging Domains .. 37

Point-To-Point Messaging .. 37
Publish/Subscribe Messaging ... 40
Domain-Specific and Unified APIs .. 42

Programming Objects ... 43
Connection Factories and Connections .. 45
Sessions ... 46
Messages .. 47

Producing a Message ... 49
Consuming a Message .. 50

Synchronous and Asynchronous Consumers .. 50
Using Selectors to Filter Messages ... 51
Using Durable Subscribers ... 51

The Request-Reply Pattern ... 51

3

Reliable Message Delivery .. 53
Acknowledgements ... 53
Transactions ... 54
Persistent Storage ... 55

A Message’s Journey Through the System .. 56
Message Production ... 57
Message Handling and Routing ... 57
Message Consumption .. 58
Message End-of-Life .. 58

Design and Performance .. 58
Working with SOAP Messages .. 59
Java and C Clients .. 59

3 The Message Queue Broker ...61
Broker Services .. 61

Connection Services .. 62
Message Delivery Services ... 64
Persistence Services .. 67
Security Services ... 68
Bridge Services .. 71
Monitoring Services ... 73

Administration Tools .. 76
Built-in Administration Tools .. 76
JMX-Based Administration .. 78

Administration Tasks ... 79
Supporting a Development Environment .. 79
Supporting a Production Environment .. 80

4 Broker Clusters ...83
Cluster Models ... 83
Cluster Message Delivery ... 84

Propagation of Information Across a Cluster ... 85
Message Delivery Mechanisms ... 86

Conventional Clusters .. 87
Enhanced Clusters ... 90

Contents

Open Message Queue 4.5 Technical Overview • July 20114

Cluster Models Compared ... 93
Cluster Configuration ... 94

5 Message Queue and Java EE .. 97
JMS/Java EE Programming: Message-Driven Beans .. 97
Java EE Application Server Support .. 99

A Message Queue Implementation of Optional JMS Functionality ... 101
Optional Features .. 101

B Message Queue Features ...103
Feature List ... 104

Glossary .. 125

Index ... 129

Contents

5

6

Figures

FIGURE 1–1 Middleware .. 20
FIGURE 1–2 MOM-Based System ... 21
FIGURE 1–3 Combining RPC and MOM Systems .. 23
FIGURE 1–4 JMS Messaging Domains .. 25
FIGURE 1–5 Basic Elements of a JMS Application System ... 27
FIGURE 1–6 Message Queue Service ... 29
FIGURE 2–1 Simple Point-to-Point Messaging .. 38
FIGURE 2–2 Complex Point-to-Point Messaging .. 39
FIGURE 2–3 Simple Publish/Subscribe Messaging .. 40
FIGURE 2–4 Complex Publish/Subscribe Messaging .. 41
FIGURE 2–5 JMS Programming Objects .. 44
FIGURE 2–6 Request/Reply Pattern .. 52
FIGURE 2–7 Message Delivery Steps ... 57
FIGURE 3–1 Persistence Support ... 67
FIGURE 3–2 Security Manager Support .. 69
FIGURE 3–3 Monitoring Service Support ... 74
FIGURE 3–4 Message Queue Administration Tools .. 77
FIGURE 4–1 Message Queue Broker Cluster .. 85
FIGURE 4–2 Conventional Broker Cluster with Master Broker .. 88
FIGURE 4–3 Conventional Broker Cluster of Peer Brokers .. 89
FIGURE 4–4 Enhanced Cluster .. 91
FIGURE 4–5 Cluster Infrastructure ... 93
FIGURE 5–1 Messaging with MDBs .. 98

7

8

Tables

TABLE 2–1 JMS Programming Domains and Objects .. 42
TABLE 2–2 Producing and Consuming Messages. .. 44
TABLE 2–3 JMS-Defined Message Header ... 47
TABLE 2–4 Message Body Types ... 49
TABLE 4–1 Clustering Model Differences .. 94
TABLE A–1 Optional JMS Functionality ... 101
TABLE B–1 Message Queue Features ... 104

9

10

Preface

This book, the Message Queue Technical Overview, provides an introduction to the technology,
concepts, architecture, capabilities, and features of the Message Queue messaging service.

As such, this book provides the foundation for other books within the Message Queue
documentation set, and should be read first.

This preface consists of the following sections:

■ “Who Should Use This Book” on page 11
■ “Before You Read This Book” on page 12
■ “How This Book Is Organized” on page 12
■ “Documentation Conventions” on page 12
■ “Related Documentation” on page 15
■ “Documentation, Support, and Training” on page 17
■ “Third-Party Web Site References” on page 18

Who Should Use This Book
This guide is meant for application developers, administrators, and other parties who plan to
use the Message Queue product or who wish to understand the technology, concepts,
architecture, capabilities, and features of the product. In the context of Message Queue:

■ An application developer is responsible for writing Message Queue client applications that
use the Message Queue service to exchange messages with other client applications.

■ An administrator is responsible for setting up and managing a Message Queue messaging
service.

This book does not assume any knowledge of messaging systems or the Java Message Service
(JMS) specification, which is implemented by the Message Queue service.

11

Before You Read This Book
There are no prerequisites to this book. You should read this book to gain an understanding of
basic Message Queue concepts and technology before reading the Message Queue developer
and administration guides.

How This Book Is Organized
This guide is designed to be read from beginning to end; each chapter builds on information
contained in earlier chapters. The following table briefly describes the contents of each chapter.

TABLE P–1 Book Contents

Chapter Description

Chapter 1, “Messaging Systems:
An Introduction”

Introduces messaging middleware technology, discusses the JMS standard,
and describes the Message Queue service implementation of that standard.

Chapter 2, “Client
Programming Model”

Describes the JMS programming model and how you can use the Message
Queue client runtime to create JMS clients. Describes runtime support for
C++ clients and for the transport of SOAP messages.

Chapter 3, “The Message Queue
Broker”

Discusses administrative tasks and tools and describes broker services used
to configure connections, routing, persistence, security, and monitoring.

Chapter 4, “Broker Clusters” Discusses the architecture and use of Message Queue broker clusters.

Chapter 5, “Message Queue and
Java EE”

Explores the ramifications of implementing JMS support in a Java EE
platform environment.

Appendix A, “Message Queue
Implementation of Optional
JMS Functionality”

Describes how the Message Queue product handles JMS optional items.

Appendix B, “Message Queue
Features”

Lists Message Queue features, summarizes steps needed to implement these,
and provides reference for further information.

Glossary Provides information about terms and concepts you might encounter while
using Message Queue.

Documentation Conventions
This section describes the following conventions used in Message Queue documentation:

■ “Typographic Conventions” on page 13
■ “Symbol Conventions” on page 13
■ “Shell Prompt Conventions” on page 14
■ “Directory Variable Conventions” on page 14

Preface

Open Message Queue 4.5 Technical Overview • July 201112

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Note: Some emphasized items appear bold
online.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

Preface

13

TABLE P–3 Symbol Conventions (Continued)
Symbol Description Example Meaning

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Shell Prompt Conventions
The following table shows the conventions used in Message Queue documentation for the
default UNIX system prompt and superuser prompt for the C shell, Bourne shell, Korn shell,
and for the Windows operating system.

TABLE P–4 Shell Prompt Conventions

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name%

C shell superuser on UNIX, Linux, or AIX machine-name#

Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Directory Variable Conventions
Message Queue documentation makes use of three directory variables; two of which represent
environment variables needed by Message Queue. (How you set the environment variables
varies from platform to platform.)

The following table describes the directory variables that might be found in this book and how
they are used. Some of these variables refer to the directory mqInstallHome, which is the
directory where Message Queue is installed to when using the installer or unzipped to when
using a zip-based distribution.

Note – In this book, directory variables are shown without platform-specific environment
variable notation or syntax (such as $IMQ_HOME on UNIX). Non-platform-specific path names
use UNIX directory separator (/) notation.

Preface

Open Message Queue 4.5 Technical Overview • July 201114

TABLE P–5 Directory Variable Conventions

Variable Description

IMQ_HOME The Message Queue home directory:
■ For installations of Message Queue bundled with GlassFish Server, IMQ_HOME is

as-install-parent/mq, where as-install-parent is the parent directory of the GlassFish
Server base installation directory, glassfish3 by default.

■ For installations of Open Message Queue, IMQ_HOME is mqInstallHome/mq.

IMQ_VARHOME The directory in which Message Queue temporary or dynamically created configuration and
data files are stored; IMQ_VARHOME can be explicitly set as an environment variable to point to
any directory or will default as described below:
■ For installations of Message Queue bundled with GlassFish Server, IMQ_VARHOME

defaults to as-install-parent/glassfish/domains/domain1/imq.

■ For installations of Open Message Queue, IMQ_HOME defaults to mqInstallHome/var/mq.

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime environment (JRE)
required by Message Queue executable files. By default, Message Queue looks for and uses
the latest JDK, but you can optionally set the value of IMQ_JAVAHOME to wherever the
preferred JRE resides.

Related Documentation
The information resources listed in this section provide further information about Message
Queue in addition to that contained in this manual. The section covers the following resources:

■ “Message Queue Documentation Set” on page 15
■ “Java Message Service (JMS) Specification” on page 16
■ “JavaDoc” on page 16
■ “Example Client Applications” on page 16
■ “Online Help” on page 17

Message Queue Documentation Set
The documents that constitute the Message Queue documentation set are listed in the following
table in the order in which you might normally use them. These documents are available
through the Open Server documentation web site at

http://www.oracle.com/technetwork/indexes/documentation/index.html

Preface

15

http://www.oracle.com/technetwork/indexes/documentation/index.html

TABLE P–6 Message Queue Documentation Set

Document Audience Description

Open Message Queue 4.5 Technical
Overview

Developers and
administrators

Describes Message Queue concepts, features,
and components.

Open Message Queue 4.5 Release
Notes

Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well as
technical notes.

Open Message Queue 4.5
Administration Guide

Administrators, also
recommended for
developers

Provides background and information needed
to perform administration tasks using Message
Queue administration tools.

Open Message Queue 4.5
Developer’s Guide for Java Clients

Developers Provides a quick-start tutorial and
programming information for developers of
Java client programs using the Message Queue
implementation of the JMS or SOAP/JAXM
APIs.

Open Message Queue 4.5
Developer’s Guide for C Clients

Developers Provides programming and reference
documentation for developers of C client
programs using the Message Queue C
implementation of the JMS API (C-API).

Open Message Queue 4.5
Developer’s Guide for JMX Clients

Administrators Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Java Message Service (JMS) Specification
The Message Queue message service conforms to the Java Message Service (JMS) application
programming interface, described in the Java Message Service Specification. This document can
be found at the URL

http://www.oracle.com/technetwork/java/jms/index.html

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is included in Message Queue
installations at IMQ_HOME/javadoc/index.html. This documentation can be viewed in any
HTML browser. It includes standard JMS API documentation as well as Message
Queue–specific APIs.

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Preface

Open Message Queue 4.5 Technical Overview • July 201116

http://www.oracle.com/technetwork/java/jms/index.html

Example Java Client Applications
Example Java client applications are included in Message Queue installations at
IMQ_HOME/examples. See the README files located in this directory and its subdirectories for
descriptive information about the example applications.

Example C Client Programs
Example C client applications are included in Message Queue installations at
IMQ_HOME/examples/C. See the README files located in this directory and its subdirectories for
descriptive information about the example applications.

Example JMX Client Programs
Example Java Management Extensions (JMX) client applications are included in Message
Queue installations at IMQ_HOME/examples/jmx. See the README files located in this directory
and its subdirectories for descriptive information about the example applications.

Online Help
Online help is available for the Message Queue command line utilities; for details, see Chapter
16, “Command Line Reference,” in Open Message Queue 4.5 Administration Guide for details.
The Message Queue graphical user interface (GUI) administration tool, the Administration
Console, also includes a context-sensitive help facility; see the section “Administration Console
Online Help” in Chapter 2, “Quick-Start Tutorial,” in Open Message Queue 4.5 Administration
Guide.

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://www.oracle.com/technetwork/indexes/documentation/
index.html)

■ Support (http://www.oracle.com/us/support/044752.html)
■ Training (http://education.oracle.com/pls/web_prod-plq-dad/

db_pages.getpage?page_id=315)

Preface

17

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/us/support/044752.html
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315

Third-Party Web Site References
Where relevant, this manual refers to third-party URLs that provide additional, related
information.

Note – Oracle is not responsible for the availability of third-party Web sites mentioned in this
manual. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials available on or through such sites or resources. Oracle will not be
responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or
in connection with the use of or reliance on any such content, goods, or services available on or
through such sites or resources.

Preface

Open Message Queue 4.5 Technical Overview • July 201118

Messaging Systems: An Introduction

Open Message Queue is a leading business integration messaging system designed to provide
exceptional reliability and scalability.

Message Queue is a messaging middleware product that implements the Java Message Service
(JMS) standard. In addition, Message Queue provides enterprise-strength capabilities,
including advanced integration, administration, security, and high-availability features.

Message Queue can be used as a stand-alone messaging service or it can be used as an enabling
technology, deployed in a Java EE application server to provide asynchronous messaging. It is
an integral enabling technology of the GlassFish Server software.

This chapter describes the messaging technology that underlies Message Queue and explains
how Message Queue implements and extends the JMS specification. If you are familiar with the
JMS specification, you can skip to the section of this chapter on “Message Queue: Elements and
Features” on page 28. Otherwise, you should begin at the beginning.

The chapter covers the following topics:

■ “Message-Oriented Middleware (MOM)” on page 19
■ “JMS as a MOM Standard” on page 24
■ “Message Queue: Elements and Features” on page 28

Message-Oriented Middleware (MOM)
Because businesses, institutions, and technologies change continually, the software systems that
serve them must be able to accommodate such changes. Following a merger, the addition of a
service, or the expansion of available services, a business can ill afford to recreate its information
systems. It is at this most critical point that it needs to integrate new components or to scale
existing ones as efficiently as possible. The easiest way to integrate heterogeneous components
is not to recreate them as homogeneous elements but to provide a layer that allows them to
communicate despite their differences. This layer, called middleware, allows software

1C H A P T E R 1

19

components (applications, enterprise java beans, servlets, and other components) that have
been developed independently and that run on different networked platforms to interact with
one another. It is when this interaction is possible that the network can become the computer.

As shown in Figure 1–1, conceptually, middleware resides between the application layer and the
platform layer (the operating system and underlying network services).

Applications distributed on different network nodes use the application interface to
communicate without having to be concerned with the details of the operating environments
that host other applications nor with the services that connect them to these applications. In
addition, by providing an administrative interface, this new, virtual system of interconnected
applications can be made reliable and secure. Its performance can be measured and tuned, and
it can be scaled without losing function.

Middleware can be grouped into the following categories:

FIGURE 1–1 Middleware

ComponentApplication 1

Platform1

Application 2

Application Programming Interface

Middleware — Distributed
System Services

Admin

Platform
Interface

Platform2

Platform
Interface

Platform3

Platform
Interface

Message-Oriented Middleware (MOM)

Open Message Queue 4.5 Technical Overview • July 201120

■ Remote Procedure Call or RPC-based middleware, which allows procedures in one
application to call procedures in remote applications as if they were local calls. The
middleware implements a linking mechanism that locates remote procedures and makes
these transparently available to a caller. Traditionally, this type of middleware handled
procedure-based programs; it now also includes object-based components.

■ Object Request Broker or ORB-based middleware, which enables an application’s objects to
be distributed and shared across heterogeneous networks.

■ Message Oriented Middleware or MOM-based middleware, which allows distributed
applications to communicate and exchange data by sending and receiving messages.

All these models make it possible for one software component to affect the behavior of another
component over a network. They are different in that RPC- and ORB-based middleware create
systems of tightly-coupled components, whereas MOM-based systems allow for a looser
coupling of components. In an RPC- or ORB-based system, when one procedure calls another,
it must wait for the called procedure to return before it can do anything else. In these
synchronous messaging models, the middleware functions partly as a super-linker, locating the
called procedure on a network and using network services to pass function or method
parameters to the procedure and then to return results.

MOM-based systems allows communication to happen through the asynchronous exchange of
messages, as shown in Figure 1–2.

Message Oriented Middleware makes use of messaging provider to mediate messaging
operations. The basic elements of a MOM system are clients, messages, and the MOM provider,
which includes an API and administrative tools. The MOM provider uses different
architectures to route and deliver messages: it can use a centralized message server or it can
distribute routing and delivery functions to each client machine. Some MOM products
combine these two approaches.

Using a MOM system, a client makes an API call to send a message to a destination managed by
the provider. The call invokes provider services to route and deliver the message. Once it has

FIGURE 1–2 MOM-Based System

Client Client

Messaging
Provider

DestinationMsg1

Send

Msg1

Receive

A
P
I

A
P
I

Message-Oriented Middleware (MOM)

Chapter 1 • Messaging Systems: An Introduction 21

sent the message, the client can continue to do other work, confident that the provider retains
the message until a receiving client retrieves it. The message-based model, coupled with the
mediation of the provider, makes it possible to create a system of loosely-coupled components.
Such a system can contin

One other advantage of having a messaging provider mediate messaging between clients is that
by adding an administrative interface, you can monitor and tune performance. Client
applications are thus effectively relieved of every problem except that of sending, receiving, and
processing messages. It is up to the code that implements the MOM system and up to the
administrator to resolve issues like interoperability, reliability, security, scalability, and
performance.

So far we have described the advantages of connecting distributed components using
message-oriented middleware. There are also disadvantages: one of them results from the loose
coupling itself. With a synchronous messaging system, the calling function does not return until
the called function has finished its task. In an asynchronous system, the calling client can
continue to load work upon the recipient until the resources needed to handle this work are
depleted and the called component fails. Of course, these conditions can be minimized or
avoided by monitoring performance and adjusting message flow, but this is work that is not
needed with a synchronous messaging system. The important thing is to understand the
advantages and liabilities of each kind of system. Each system is appropriate for different kinds
of tasks. Sometimes, you will need to combine the two kinds of systems to obtain the exact
behavior you need.

Figure 1–3 shows the way a MOM system can enable communication between two
synchronous messaging systems (for example, two RPC-based systems). The left side of the
figure shows an application that distributes client, server, and data store components on
different networked nodes for improved performance. This is a discount airline reservation
system: an end user pays a fee to use this service, which allows it to find the lowest available fare
for given destinations and times. The data store holds information about registered users and
about airlines that participate in this program. Based on the user’s request, logic on the server
queries participating airlines for prices, sorts through the information, and presents the three
lowest bids to the user. The right side of the picture shows an RPC-based system that represents
the ticket/reservation system for any one of the participating airlines. The right side of the
picture would be replicated for as many airlines as the discounter is connected to. For each such
airline, the data store would hold information about available flights (seating, flight times, and
prices). The server component would update that information in response to data input by the
end user. The airline server also subscribes to the MOM service, accepting requests for
information from the discount reservation system and returning seating and pricing
information. If a customer decides to purchase a discounted ticket on a PanWorld flight, the
server component for that system would update the information in the data store and then
either generate a ticket for the requester or send a message to the discounting service to generate
the ticket.

Message-Oriented Middleware (MOM)

Open Message Queue 4.5 Technical Overview • July 201122

This example illustrates some of the differences between RPC and MOM systems. The
difference in the way in which distributed components are coupled has already been
mentioned. Another difference is that while RPC systems are often used to distribute and
connect client and server components in which the client component is directly accessed by an
end-user, with MOM systems, client components are often heterogeneous software systems
that can only interoperate by means of asynchronous messaging.

A more serious problem with MOM systems arises from the fact that MOMs are implemented
as proprietary products. What happens when your company, which depends on SuperMOM-X
acquires a company that uses SuperMOM-Y? To resolve this problem, a standard messaging
interface is needed. If both SuperMOM-X and SuperMOM-Y implemented this interface, then
applications developed to run on one system could also run on the other. Such an interface
should be simple to learn but provide enough features to support sophisticated messaging
applications. The Java Message Service (JMS) specification, introduced in 1998, aimed to do just
that. The next section describes the basic features of JMS and explains how the standard was
developed to embrace common elements of existing proprietary MOM products as well as to
allow for differences and further growth.

FIGURE 1–3 Combining RPC and MOM Systems

Messaging
Provider

RPC System MOM System

DestinationMsg1 Msg1Server Server

End
User

Discount Airline
Tickets Application

RPC System

End
User

PanWorld
Airlines

Data
Store

Data
Store

Message-Oriented Middleware (MOM)

Chapter 1 • Messaging Systems: An Introduction 23

JMS as a MOM Standard
The Java Messaging Service specification was originally developed to allow Java applications
access to existing MOM systems. Since its introduction, it has been adopted by many existing
MOM vendors and it has been implemented as an asynchronous messaging system in its own
right.

In creating the JMS specification, its designers wanted to capture the following essential
elements of existing messaging systems:

■ The concept of a messaging provider that routes and delivers messages
■ Support for reliable message delivery
■ Distinct messaging patterns or domains such as point-to-point messaging and

publish/subscribe messaging
■ Facilities for pushing messages to message consumers (asynchronous receipt) and having

them pulled by message consumers (synchronous receipt).
■ Common message formats such as stream, text, and byte

Vendors implement the JMS specification by supplying a JMS provider consisting of libraries
that implement the JMS interfaces, of functionality for routing and delivering messages, and of
administrative tools that manage, monitor, and tune the messaging service. Routing and
delivery functions can be performed by a centralized message server, or they can be
implemented through functionality that is part of each client’s runtime.

Equally, a JMS provider can play a variety of roles: it can be created as a stand-alone product or
as an embedded component in a larger distributed runtime system. As a standalone product, it
could be used to define the backbone of an enterprise application integration system; embedded
in an application server, it could support inter-component messaging. For example, Java
Platform, Enterprise Edition (Java EE) uses a JMS provider to implement message-driven beans
and to allow EJB components to send and receive messages asynchronously.

To have created a standard that included all features of existing systems would have resulted in
a system that was hard to learn and difficult to implement. Instead, JMS defined a least common
denominator of messaging concepts and features. This resulted in a standard that is easy to
learn and that maximizes the portability of JMS applications across JMS providers. It’s
important to note that JMS is an API standard, not a protocol standard. Because all JMS clients
implement the same interface, it is easy to port one vendor's clinet to another vendor's JMS
provide implementation. But different JMS vendors typically cannot communicate directly
with one another.

The next section describes the basic objects and messaging patterns defined by the JMS
specification.

JMS as a MOM Standard

Open Message Queue 4.5 Technical Overview • July 201124

JMS Messaging Objects and Domains
In order to send or receive messages, a JMS client must first connect to a JMS message server
(most often called a broker): the connection opens a channel of communication between the
client and the broker. Next, the client must set up a session for creating, producing, and
consuming messages. You can think of the session as a stream of messages defining a particular
conversation between the client and the broker. The client itself is a message producer and/or a
message consumer. The message producer sends a message to a destination that the broker
manages. The message consumer accesses that destination to consume the message. The
message includes a header, optional properties, and a body. The body holds the data; the header
contains information the broker needs to route and manage the message; and the properties can
be defined by client applications or by a provider to serve their own needs in processing
messages. Connections, sessions, destinations, messages, producers, and consumers are the
basic objects that make up a JMS application.

Using these basic objects, a client application can use two messaging patterns (or domains) to
send and receive messages. These are shown in Figure 1–4.

Clients A and B are message producers, sending messages to clients C, D, E, and F by way of two
different kinds of destinations.

■ Messaging between clients A, C, and D illustrates the point-to-point domain. Using this
pattern, a client sends a message to a queue destination from which only one receiver may
get it. No other receiver accessing that destination can get that specific message.

FIGURE 1–4 JMS Messaging Domains

Broker

ClientA Queue

Topic

Message
Producers

ClientC

ClientD

ClientE

ClientF

Message
Consumers

Msg1

Msg2 Msg1 Msg2

Msg3

Msg3

ClientB Msg3

JMS as a MOM Standard

Chapter 1 • Messaging Systems: An Introduction 25

■ Messaging between clients B, E, and F illustrates the publish/subscribe domain. Using this
broadcast pattern, a client sends a message to a topic destination from which any number of
consuming subscribers can retrieve it. Each subscriber gets its own copy of the message.

Message consumers in either domain can choose to receive messages synchronously or
asynchronously. Synchronous consumers make an explicit call to retrieve a message;
asynchronous consumers specify a callback method that is invoked to pass a pending message.
Consumers can also filter out messages by specifying selection criteria for incoming messages.

Administered Objects
The JMS specification created a standard that combined many elements of existing MOM
systems without attempting to exhaust all possibilities. Rather, it sought to set up an extensible
scheme that could accommodate differences and future growth. JMS leaves a number of
messaging elements up to the individual JMS providers to define and implement. These include
load balancing, standard error messages, administrative APIs, security, the underlying wire
protocols, and message stores. The next section, “Message Queue: Elements and Features” on
page 28 describes how Message Queue implements many of these elements and how it extends
the JMS specification.

Two messaging elements that the JMS specification does not completely define are connection
factories and destinations. Although these are fundamental elements in the JMS programming
model, there were so many existing and anticipated differences in the ways providers define and
manage these objects, that it was neither possible nor desirable to create a common definition.
Therefore, these two provider-specific objects, rather than being created programmatically, are
normally created and configured using administration tools. They are then stored in an object
store, and accessed by a JMS client through standard Java Naming and Directory Interface
(JNDI) lookups.

■ Connection factory administered objects are used to generate a client’s connections to the
broker. They encapsulate provider-specific information that governs certain aspects of
messaging behavior: connection handling, client identification, message header overrides,
reliability, and flow control, and so on. Every connection derived from a given connection
factory exhibits the behavior configured for that factory.

■ Destination administered objects are used to reference physical destinations on the broker.
They encapsulate provider-specific naming (address-syntax) conventions and they specify
the messaging domain within which the destination is used: point-to-point (queue
destination) or publish/subscribe (topic destination).

JMS clients, however, are not required to look up administered objects; they can create these
objects programmatically. For quick prototyping, creating these objects programmatically
might be easiest. But for deployment in a production environment, looking up administered
objects in a central repository makes it much easier to control and manage messaging behavior
throughout the system:

JMS as a MOM Standard

Open Message Queue 4.5 Technical Overview • July 201126

■ By using administered objects for connection factory objects, administrators can tune
messaging performance by reconfiguring these objects. Performance can be improved
without having to recode client applications.

■ By using administered objects for physical destinations, administrators can control the
proliferation of these destinations (which can be auto-created) on the broker by requiring
clients to access only preconfigured destination objects.

■ Administered objects shield client developers from provider-specific implementation
details and allow the code they develop for one provider to be portable to other providers
with little or no change.

The use of administered objects completes the set of elements in a JMS application system, as
shown in Figure 1–5.

FIGURE 1–5 Basic Elements of a JMS Application System

Broker

Physical
Destinations

Message
Consumer

Destination
Administered Objects

Connection Factory
Administered Objects

Msg1 Msg1
JNDI

JMS
API

1

2

4 6

ClientC

5

Admin

Object
Store

Message
Producer

ClientA

JNDI

JMS
API

3

JMS as a MOM Standard

Chapter 1 • Messaging Systems: An Introduction 27

Figure 1–5 shows how a message producer and a message consumer use destination
administered objects to access the physical destination to which they correspond. The marked
steps denote the actions that need to be taken by the administrator and by the client
applications to send and receive messages using this mechanism:

1. The administrator creates a physical destination on the broker.
2. The administrator creates a destination administered object and configures it by specifying

the name of the physical destination to which it corresponds and its type: queue or topic.
3. The message producer uses a JNDI call to look up the destination administered object that

points to the corresponding physical destination.
4. The message producer sends a message to the physical destination.
5. The message consumer uses a JNDI call to look up the destination administered object that

points to the corresponding physical destination from which it expects to get messages.
6. The message consumer gets the message from the physical destination.

The process of using connection factory administered objects is similar. The administrator
creates and configures a connection factory administered object using administration tools.
The client looks up the connection factory object and uses it to create a connection.

Although the use of administered objects adds a couple of steps to the messaging process, it also
adds robustness and portability to messaging applications.

Message Queue: Elements and Features
So far we have described the elements of message-oriented middleware and the use of JMS as a
way of adding portability to MOM applications. It now remains to describe how Message Queue
implements the JMS specification and to introduce the features and tools it uses to provide
reliable, secure, and scalable messaging services.

First, like many JMS providers, Message Queue can be used as a stand-alone product or it can be
used as an enabling technology, embedded in a Java EE application server to provide
asynchronous messaging. Chapter 5, “Message Queue and Java EE,” describes the role Message
Queue plays in Java EE in greater detail. Unlike other JMS providers, Message Queue has been
designated as the JMS reference implementation. This designation attests to the fact that
Message Queue is a correct and complete JMS implementation. It also guarantees that the
Message Queue product will remain current with any future JMS revisions and extensions.

This section covers the following topics:

■ “The Message Queue Service” on page 29
■ “Message Queue as an Enabling Technology” on page 34
■ “Message Queue Feature Summary” on page 35

Message Queue: Elements and Features

Open Message Queue 4.5 Technical Overview • July 201128

The Message Queue Service
As a JMS provider, Message Queue offers a message service that implements the JMS interfaces
and that also provides administrative management and control. So far, in illustrating JMS
providers, the focus has been mainly on the role of a broker in delivering messages. But in fact, a
JMS provider must include many additional elements to provide reliable, secure, and scalable
messaging. Figure 1–6 shows the elements that make up the Message Queue message service
(the shaded elements in the figure).

As you can see, a full-featured JMS provider is more complex than the basic JMS model might
lead one to suspect. The following sections introduce the elements of the Message Queue service
shown in Figure 1–6:

FIGURE 1–6 Message Queue Service

Broker

Legend

Java
Client

Java
Client

Runtime

JNDI

Configuration
Files and

Logs

Persisted
Messages and
Broker State

User
Repository

Administered
Objects

Web
Server

HTTP/
HTTPS
Tunnel
Servlet

Message Queue
Message Service

Universal
Message
Service
(UMS)

MQ/JMX
Runtime

JMX
Client

F
ire

w
al

l

Physical
Destinations

Admin

C
Client

C Client
Runtime

HTTP-Enabled
Devices

(Non-JMS Clients)

Message Queue: Elements and Features

Chapter 1 • Messaging Systems: An Introduction 29

■ “The Broker” on page 30
■ “Client Runtime Support” on page 30
■ “Universal Message Service (UMS)” on page 32
■ “Administration” on page 32
■ “Broker Clusters: Scalability and Availability” on page 33

The Broker
At the heart of the message service is the broker, which routes and delivers messages reliably,
authenticates users, and gathers data for monitoring performance.

■ To establish connections to both application clients and administration clients, the broker
supports a number of connection services layered on top of several wire protocols.

■ To route and deliver messages, the broker places incoming messages in their respective
destinations and manages message flow into and out of these destinations.

■ To provide reliable delivery, the broker uses a persistent data store to save state information
and persistent messages until they are consumed. Should the broker or the connection fail,
the saved information allows the broker to restore the broker’s state and to resume
operations.

■ To provide security for the data being exchanged the broker uses authenticated connections.
Optionally data may be encrypted by running over a secure protocol like SSL. The broker
also uses and manages a repository that holds information about users and the data or
operations they can access. The broker authenticates users who are requesting services and
authorizes the operations they want to carry out by looking up information in this
repository.

■ To monitor the system, the broker generates metrics and diagnostic information that an
administrator can access to measure performance and to tune the broker. Metrics
information is also available programmatically to allow applications or administrators to
adjust message flow and patterns to improve performance.

The Message Queue service provides a variety of administrative tools that the administrator can
use to configure broker support. For more information, see “Built-in Administration Tools” on
page 76.

Client Runtime Support
Client runtime support is provided in libraries that you use when building and running
Message Queue clients. You can think of the client runtime as the part of the Message Queue
service that enables the client. For example, when client code makes an API call to send a
message, code in these libraries is invoked that packages the message bits appropriately for the
protocol that will be used to relay the message to a physical destination on the broker.

Message Queue: Elements and Features

Open Message Queue 4.5 Technical Overview • July 201130

Java and C Client Support

A JMS provider is only required to support Java clients; however, as Figure 1–6 shows, a
Message Queue client can use either the Java API or a proprietary C API to send or receive a
message. These interfaces are implemented in Java or C runtime libraries, which do the actual
work of creating connections to the broker and packaging the bits appropriately for the
connection service being used.

■ The Java client runtime supplies Java clients with the objects needed to interact with the
broker. These objects include connections, sessions, messages, message producers, and
message consumers.

■ The C client runtime supplies C clients with the functions and structures needed to interact
with the broker. It supports a procedural version of the JMS programming model. C clients
cannot use JNDI to access administered objects, but can create connection factories and
destinations programmatically. Message Queue provides the C API to enable legacy C and
C++ applications to participate in JMS-based messaging.

There are a number of differences in the functionality provided by these two APIs; these are
documented in “Java and C Clients” on page 59.

It is important to remember that the JMS specification is a standard for Java clients only. C
support is specific to the Message Queue provider and should not be used in client applications
that you plan to port to other providers.

Support for SOAP Messages

SOAP (Simple Object Access Protocol) allows the exchange of structured data between two
peers in a distributed environment. The data exchanged is specified by an XML schema. SOAP
message delivery is limited to using the point-to-point domain and does not by itself guarantee
reliability.

However, Message Queue Java clients are able to send and receive SOAP messages,
encapsulated as JMS messages. By encapsulating a SOAP message in a JMS message and
delivering it using the broker, you can take advantage of full featured Message Queue
messaging, which guarantees reliable delivery and also allows you to use the publish/subscribe
domain. Message Queue provides utility routines that a message producer can use to
encapsulate a SOAP message as a JMS message and that a message consumer can use to extract a
SOAP message from the JMS message. Message Queue also provides XML schema validation of
the encapsulated XML message.

“Working with SOAP Messages” on page 59 gives you a more detailed view of SOAP message
processing.

Message Queue: Elements and Features

Chapter 1 • Messaging Systems: An Introduction 31

Universal Message Service (UMS)
The Universal Messaging Service (UMS) and its messaging API provides access to Message
Queue from any http-enabled device. As a result, almost any application can communicate with
any other application and benefit from the reliability and guaranteed delivery of the Message
Queue service.

The UMS, which runs in a web server, is language neutral and platform independent. The UMS
serves as a gateway between any non-JMS client application and Message Queue. It receives
messages sent using the UMS API, transforms them into JMS messages, and produces them to
destinations in the Message Queue broker by way of the broker's connection services. Similarly,
it retrieves messages from destinations in the broker, transforms them into text or SOAP
messages, and sends the messages to non-JMS clients as requested by the clients through the
UMS API.

The simple, language-independent, protocol-based UMS API supports both Web-based and
non-Web-based applications, and can be used with both scripting and programming languages.
The API is offered in two styles: a simple messaging API that uses a Representational State
Transfer (REST)-style protocol, and an XML messaging API that embeds the protocol in a
SOAP message header. In both cases, however, the API requires only a single http request to
send or receive a message.

The simplicity and flexibility of the UMS API means that AJAX, .NET, Python, Ruby, C, Java,
and many other applications can send text message and/or SOAP (with attachment) messages
to JMS destinations or receive messages from JMS destinations. For example, Python
applications can communicate with .NET applications, iPhone can communicate with Java
applications, and so forth.

Administration
The Message Queue service offers command line tools that you can use to do the following:

■ Start and configure the broker.
■ Create and manage destinations, manage broker connections, and manage broker

resources.
■ Add, list, update, and deleted administered objects in a JNDI object store.
■ Populate and manage a file-based user repository.
■ Create and manage a JDBC compliant database for persistent storage.

You can also use a GUI-based administration console to perform the following command-line
functions:

■ Connect to a broker and manage it.
■ Create and manage physical destinations.
■ Connect to an object store, add objects to the store, and manage them.

Message Queue: Elements and Features

Open Message Queue 4.5 Technical Overview • July 201132

In addition, to these built-in administration tools, Message Queue also supports the Java
Management Extensions (JMX) specification for configuring and monitoring brokers,
destinations, connection services, and so forth. Using the JMX Administration API, you can
perform these administration functions programmatically from within a Java application.

Broker Clusters: Scalability and Availability
Message Queue brokers can be connected into a broker cluster: a set of brokers that work
collectively to perform message delivery between message producers and consumers. Broker
clusters add scalability and availability to the Message Queue service, as described briefly in the
following sections:

■ “Message Service Scalability” on page 33
■ “Message Service Availability” on page 34

For additional information on broker clusters, see Chapter 4, “Broker Clusters”

Message Service Scalability

As the number of clients or the number of connections grows, you might need to scale a
message service to eliminate bottlenecks or to improve performance. In general, you can scale a
message service both vertically (increasing the number of client applications that are supported
by a single broker) and horizontally (distributing client applications among a number of
interconnected brokers).

Vertical scaling usually requires adding more processing power for a broker and by expanding
available resources. You can do this by adding more processors or memory, by switching to a
shared thread model, or by running the Java VM in 64 bit mode.

Horizontal scaling is generally achieved using a broker cluster. While it is possible to scale
horizontally by simply redistributing clients among additional brokers that are not in a cluster,
this approach is appropriate only if your messaging operations can be divided into independent
work groups. However, if producer clients must produce messages to be consumed by
consumer clients connected to remote brokers, then brokers must work collectively, as part of a
broker cluster, to achieve horizontal scaling.

In a broker cluster, each broker is connected to every other broker in the cluster. Brokers can
reside on the same host, but more often are distributed across a network. Each broker can route
messages from producers to which it is directly connected to consumers that are connected to
remote brokers in the cluster.

Message Queue: Elements and Features

Chapter 1 • Messaging Systems: An Introduction 33

Note – If you are using the point-to-point domain, you can scale the consumer side by allowing
multiple consumers to access a queue. This is a Message Queue feature (the JMS specification
defines messaging behavior in the case of only one consumer accessing a queue). When
multiple consumers access a queue, the load-balancing among them takes into account each
consumer’s capacity and message processing rate.

Message Service Availability
In addition to providing for message service scalability, broker clusters also provide for message
service availability. If one broker in a cluster fails, then other brokers in the cluster are available
to continue to provide messaging services to client applications.

Message Queue supports two clustering models that provide different degrees of availability:
■ Conventional broker clusters. A conventional broker cluster provides message service

availability. When a broker or a connection fails, clients connected to the failed broker
reconnect to another broker in the cluster. However, messages and state information stored
in the failed broker cannot be recovered until the failed broker is brought back online. This
can result in an interruption of message delivery.

■ Enhanced broker clusters. An enhanced broker cluster provides data availability in
addition to message service availability. When a broker or a connection fails, another broker
takes over the pending work of the failed broker. The failover broker has access to the failed
broker's messages and state information. Clients connected to the failed broker reconnect to
the failover broker. In an enhanced cluster, as compared to a conventional cluster, a failure
results in no interruption of message delivery.

Note – You can also achieve data availability in a conventional cluster by using Solaris Cluster
software. Solaris Cluster software replicates broker data and provides for a hot standby broker
to take over the pending work of a failed broker. For details, see the documentation for the
Solaris Cluster Data Service Agent for Message Queue.

Message Queue as an Enabling Technology
The Java Platform, Enterprise Edition (Java EE) is a specification for a distributed component
model in a Java programming environment. One of the requirements of the Java EE platform is
that distributed components be able to interact with one another through reliable,
asynchronous message exchange. This capacity is furnished by a JMS provider, which can play
two roles: it can be used to provide a service and it can support message-driven beans (MDB), a
specialized type of Enterprise Java Bean (EJB) component that can consume JMS message.

A Java EE-compliant application server must use a resource adapter furnished by a given JMS
provider to use the functionality of that provider. Message Queue provides such a resource
adapter. Using the support of a plugged in JMS provider, Java EE components, including

Message Queue: Elements and Features

Open Message Queue 4.5 Technical Overview • July 201134

MDBs, deployed and running in the application server environment can exchange JMS
messages among themselves and with external JMS components. This provides a powerful
integration capability for distributed components.

For information on the Message Queue resource adapter, see Chapter 5, “Message Queue and
Java EE”

Message Queue Feature Summary
Message Queue has capabilities and features that far exceed the requirements of the JMS
specification and JMS API. These features enable Message Queue to integrate systems
consisting of large numbers of distributed components exchanging many thousands of
messages in round-the-clock, mission-critical operations.

The following enterprise-strength features, which are listed alphabetically in Appendix B,
“Message Queue Features,” can be divided into the quality-of-service categories below:

Integration Support
■ Multiple connection services, including HTTP connections and secure connections
■ Java EE resource adapters
■ SOAP support
■ Schema validation of XML messages
■ C client support, including support for distributed transactions
■ LDAP server support

Security
■ Authentication
■ Authorization, including JAAS-based authentication
■ Secure connections, including encryption

Scalability
■ Broker clusters
■ Queue delivery to multiple consumers
■ Thread management
■ Multiple destinations for a publishers or subscriber

Availability

■ Broker clusters, including conventional clusters and enhanced clusters
■ Connection ping for health checks
■ Automatic reconnect
■ Connection event notification

Performance

Message Queue: Elements and Features

Chapter 1 • Messaging Systems: An Introduction 35

■ Tunable performance
■ Memory resource management
■ Message flow control
■ Configurable physical destinations
■ Message compression

Serviceability

■ Administration tools
■ Message-based monitoring API
■ JMX-based administration
■ Java ES Monitoring Framework support
■ Client runtime logging
■ Dead message queue
■ Broker configurations
■ Configurable persistence

Message Queue: Elements and Features

Open Message Queue 4.5 Technical Overview • July 201136

Client Programming Model

This chapter describes the basics of Message Queue client programming. It covers the following
topics:
■ “Messaging Domains” on page 37
■ “Programming Objects” on page 43
■ “Producing a Message” on page 49
■ “Consuming a Message” on page 50
■ “The Request-Reply Pattern” on page 51
■ “Reliable Message Delivery” on page 53
■ “A Message’s Journey Through the System” on page 56
■ “Java and C Clients” on page 59

This chapter focuses on the design and implementation of Java clients. By and large, C client
design roughly parallels Java client design. The final section of this chapter summarizes the
differences between Java and C clients. For a detailed discussion of programming Message
Queue clients, see Open Message Queue 4.5 Developer’s Guide for Java Clients and Open Message
Queue 4.5 Developer’s Guide for C Clients.

Messaging Domains
Messaging middleware allows components and applications to communicate by producing and
consuming messages. The JMS API defines two patterns or messaging domains that govern this
communication: point-to-point messaging and publish/subscribe messaging. The JMS API is
organized to support these patterns. The basic JMS objects: connections, sessions, producers,
consumers, destinations, and messages are used to specify messaging behavior in both domains.

Point-To-Point Messaging
In the point-to-point domain, message producers are called senders and consumers are called
receivers. They exchange messages by means of a destination called a queue: senders produce

2C H A P T E R 2

37

messages to a queue; receivers consume messages from a queue. What distinguishes
point-to-point messaging is that a message can be consumed by only one consumer.

Figure 2–1 shows the simplest messaging operation in the point-to-point domain.
MyQueueSender sends Msg1 to the queue destination MyQueue1. Then, MyQueueReceiver
obtains the message from MyQueue1.

Figure 2–2 shows a more complex picture of point-to-point messaging to illustrate the
possibilities offered by this domain. Two senders, MyQSender1 and MyQSender2, use the same
connection to send messages to MyQueue1. MyQSender3 uses an additional connection to send
messages to MyQueue1. On the receiving side, MyQReceiver1 consumes messages from
MyQueue1, and MyQReceiver2 and MyQReceiver3, share a connection in order to consume
messages from MyQueue1.

Note – Support for multiple-consumer queues is a Message Queue feature (the JMS specification
defines messaging behavior in the case of only one consumer accessing a queue). When
multiple consumers access a queue, the load-balancing among them takes into account each
consumer’s capacity and message processing rate.

FIGURE 2–1 Simple Point-to-Point Messaging

Broker

MyQueue1

MyQueueSender MyQueueReceiver

Msg1 Msg1

Messaging Domains

Open Message Queue 4.5 Technical Overview • July 201138

This more complex picture exemplifies a number of additional points about point-to-point
messaging.

■ More than one sender can produce and send messages to a queue. Senders can share a
connection or use different connections, but they can all access the same queue.

■ More than one receiver can consume messages from a queue, but each message can be
consumed by only one receiver. Thus Msg1, Msg2, and Msg3 are consumed by different
receivers. (This is a Message Queue extension.)

■ Receivers can share a connection or use different connections, but they can all access the
same queue. (This is a Message Queue extension.)

■ Senders and receivers have no timing dependencies: the receiver can consume a message
whether or not it was running when the sender produced and sent the message.

■ Messages are placed in a queue in the order they are produced, but the order in which they
are consumed depends on factors such as message expiration date, message priority,
whether a selector is used in consuming messages, and the releative message processing rate
of the consumers.

■ Senders and receivers can be added and deleted dynamically at runtime, thus allowing the
messaging system to expand or contract as needed.

The point-to-point domain offers a number of advantages:

■ Messages destined for a queue are always retained, even if there are no receivers.

FIGURE 2–2 Complex Point-to-Point Messaging

Broker

MyQueue1

MyQReceiver2

MyQSender1

MyQSender2

MyQSender3

Msg1

Msg2

Msg3

MyQReceiver1

MyQReceiver3

Msg2

Msg3

Msg1

Messaging Domains

Chapter 2 • Client Programming Model 39

■ Java clients can use a queue browser object to inspect the contents of a queue. They can then
consume messages based on the information gained from this inspection. That is, although
the consumption model is normally FIFO (first in, first out), receivers can consume
messages that are not at the head of the queue by using message selectors. Administrative
clients can also use the queue browser to monitor the contents of a queue.

■ The fact that multiple receivers can consume messages from the same queue allows you to
use load-balancing to scale message consumption if the order in which messages are
received is not important.

Publish/Subscribe Messaging
In the publish/subscribe domain, message producers are called publishers and message
consumers are called subscribers. They exchange messages by means of a destination called a
topic: publishers produce messages to a topic; subscribers subscribe to a topic and consume
messages from a topic.

Figure 2–3 shows a simple messaging operation in the publish/subscribe domain.
MyTopicPublisher publishes Msg1 to the destination MyTopic. Then, MyTopicSubscriber1 and
MyTopicSubscriber2 each receive a copy of Msg1 from MyTopic.

While the publish/subscribe model does not require that there be more than one subscriber,
two subscribers are shown in the figure to emphasize the fact that this domain allows you to
broadcast messages. All subscribers to a topic get a copy of any message published to that topic.

FIGURE 2–3 Simple Publish/Subscribe Messaging

Msg1

Msg1

Broker

MyTopic

MyTopicPublisher

MyTopicSubscriber1

MyTopicSubscriber2

Msg1

Messaging Domains

Open Message Queue 4.5 Technical Overview • July 201140

Subscribers can be durable or non-durable. If a durable subscriber becomes inactive, the broker
retains messages for it until the subscriber becomes active and consumes the messages. If a
non-durable subscriber becomes inactive, the broker does not retain messages for it.

Figure 2–4 shows a more complex picture of publish/subscribe messaging to illustrate the
possibilities offered by this domain. Several producers publish messages to the Topic1
destination. Several subscribers consume messages from the Topic1 destination. Unless, a
subscriber is using a selector to filter messages, each subscriber gets all the messages published
to the topic to which it is subscribed. In Figure 2–4, MyTSubscriber2 has filtered out Msg2.

This more complex picture exemplifies a number of additional points about publish/subscribe
messaging.

■ More than one publisher can publish messages to a topic. Publishers can share a connection
or use different connections, but they can all access the same topic.

■ More than one subscriber can consume messages from a topic. Subscribers consume all
messages published to a topic unless they use selectors to filter out messages or the messages
expire before they are consumed.

FIGURE 2–4 Complex Publish/Subscribe Messaging

Broker

Topic1

MyTPublisher1

MyTPublisher2

Msg1

Msg2

Msg3

MyTSubscriber1

MyTSubscriber2MyTPublisher3

MyTSubscriber3

Msg1

Msg2

Msg3

Msg1
Msg3

Msg1

Msg2

Msg3

Messaging Domains

Chapter 2 • Client Programming Model 41

■ Subscribers can share a connection or use different connections, but they can all access the
same topic.

■ For durable subscribers, the broker retains messages for the subscribers while these
subscribers are inactive.

■ Messages are placed in a topic in the order they are produced, but the order in which they
are consumed depends on factors such as message expiration date, message priority, and
whether a selector is used in consuming messages.

■ Publishers and subscribers have a timing dependency: a topic subscriber can consume only
messages published after the subscriber has subscribed to the topic.

■ Publishers and subscribers can be added and deleted dynamically at runtime, thus allowing
the messaging system to expand or contract as needed.

The main advantage of the publish/subscribe model is that it allows messages to be broadcast to
multiple subscribers.

Domain-Specific and Unified APIs
The JMS API defines interfaces and classes that you can use to implement either of the
point-to-point or the publish/subscribe domains. These are the domain-specific API’s shown in
columns 2 and 3 of Table 2–1. The JMS API defines an additional unified domain, which allows
you to program a generic messaging client. The behavior of such a client is determined by the
type of the destination to which it produces messages and from which it consumes messages. If
the destination is a queue, messaging will behave according to the point-to-point pattern; if the
destination is a topic, messaging will behave according to the publish/subscribe pattern.

TABLE 2–1 JMS Programming Domains and Objects

Base Type(Unified Domain) Point-to-Point Domain Publish/Subscribe Domain

Destination (Queue or Topic) Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

The unified domain was introduced with JMS version 1.1. The domain-specific API also
provides a clean programming interface that prevents certain types of programming errors: for
example, creating a durable subscriber for a queue destination. However, the domain-specific
APIs have the disadvantage that you cannot combine point-to-point and publish/subscribe

Messaging Domains

Open Message Queue 4.5 Technical Overview • July 201142

operations in the same transaction or in the same session. If you need to do that, you should
choose the unified domain API. See “The Request-Reply Pattern” on page 51 for an example of
combining the two domains.

Programming Objects
The objects used to implement JMS messaging remain essentially the same across
programming domains: connection factories, connections, sessions, producers, consumers,
messages, and destinations. These objects are shown in Figure 2–5. The figure shows, from the
top down, how objects are derived, starting with the connection factory object.

Two of the objects, connection factories and destinations, are shown to reside in an object store.
This is to underline the fact that these objects are normally created, configured, and managed as
administered objects. We assume that connection factories and destinations are created
administratively (rather than programmatically) throughout this chapter.

Programming Objects

Chapter 2 • Client Programming Model 43

Table 2–2 summarizes the steps required to send and receive messages. Note that steps 1
through 6 are the same for senders and receivers.

TABLE 2–2 Producing and Consuming Messages.

Producing a Message Consuming a Message

1. The administrator creates a connection factory administered object.

2. The administrator creates a physical destination and the administered object that corresponds to it.

3. The client obtains a connection factory object through a JNDI lookup.

4. The client obtains a destination object through a JNDI lookup.

FIGURE 2–5 JMS Programming Objects

Message
Producers

Connection
Factory

Creates

Connections

Consumes
from

Message

Sessions

Message
Consumers

DestinationDestination

Creates

CreatesCreates

Produces
to

Programming Objects

Open Message Queue 4.5 Technical Overview • July 201144

TABLE 2–2 Producing and Consuming Messages. (Continued)
Producing a Message Consuming a Message

5. The client creates a connection.

5. The client sets the ClientID, as necessary.

6. The client creates a session and sets the properties that govern messaging reliability.

7. The client creates a message producer for a
specified destination.

The client creates a message consumer for a specified
destination.

8. The client starts the connection.

9. The client sends a message. The client consumes a message.

The following sections describe the objects used by producers and consumers: connections,
sessions, messages, and destinations. We will then complete the discussion of JMS objects by
describing the production and consumption of messages.

Connection Factories and Connections
A client uses a connection factory object (ConnectionFactory) to create a connection. A
connection object (Connection) represents a client’s active connection to the broker. It uses the
underlying Message Queue connection service that is either started by default or is explicitly
started by the administrator for this client.

Both allocation of communication resources and authentication of the client take place when a
connection is created. It is a relatively heavyweight object, and most clients do all their
messaging with a single connection. Connections support concurrent use: any number of
producers and consumers can share a connection.

When you create a connection factory, you can configure the behavior of all connections
derived from it by setting its properties. For Message Queue, these specify the following
information:

■ The name of the host on which the broker resides, the connection service desired, and the
port through which the client is to access that service.

■ How automatic reconnection to the broker should be handled if the connection fails. This
feature reconnects the client to the same (or, in a broker cluster, to a different broker) if a
connection is lost.

■ The ID of any client that needs the broker to track its durable subscription.
■ The default name and password of any user attempting the connection. This information is

used to authenticate the user and authorize operations if a password is not specified at
connection time.

Programming Objects

Chapter 2 • Client Programming Model 45

■ Whether broker acknowledgements should be suppressed for any clients that are not
concerned with reliability.

■ How to manage the flow of control and payload messages between the broker and the client
runtime.

■ How queue browsing should be handled (Java clients only).
■ Whether certain message header fields should be overridden.

It is possible to override connection factory properties from the command line used to start the
client application. It is also possible to override properties for any given connection by explicitly
setting properties for that connection.

You can use a connection object to create session objects, to set up an exception listener, or to
obtain JMS version and JMS provider information.

Sessions
If the connection represents a communication channel between the client and the broker, a
session marks a single conversation between them. Mainly, you use a session object to create
messages, message producers, and message consumers. When you create a session, you
configure reliable delivery through a number of acknowledgement options or through
transactions. For more information, see “Reliable Message Delivery” on page 53.

According to the JMS specification, a session is a single-threaded context for producing and
consuming messages. You can create multiple message producers and consumers for a single
session, but you are restricted to using them serially. The threading implementation varies
slightly for Java and C clients. Consult the appropriate developer’s guide for additional
information about threading implementation and restrictions.

You can also use a session object to do the following:

■ Create and configure destinations for those clients that do not use administered objects to
obtain references to existing destinations.

■ Create and configure temporary topics and queues; these are used as part of the
request-reply pattern. See “The Request-Reply Pattern” on page 51.

■ Support transaction processing.
■ Define a serial order for producing or consuming messages.
■ Serialize the execution of message listeners for asynchronous consumers (see “Consuming a

Message” on page 50).
■ Create queue browsers (Java clients only).
■ Define when messages are considered processed.

Programming Objects

Open Message Queue 4.5 Technical Overview • July 201146

Messages
A message is composed of three parts: a header, properties, and a body. You must understand
this structure in order to compose a message properly and to configure certain messaging
behaviors.

Message Header
A header is required of every JMS message. The header contains ten predefined fields, which are
listed and described in Table 2–3.

TABLE 2–3 JMS-Defined Message Header

Header Field Description Set By

JMSDestination Specifies the name of the destination to which the message is
sent.

JMS provider

JMSDeliveryMode Specifies whether the message is persistent. Client, per producer
or per individual
message produced.

JMSExpiration Specifies the time when the message will expire. Client, per producer
or per individual
message produced..

JMSPriority Specifies the priority of the message within a 0 (low) to 9 (high)
range.

Client, per producer
or per individual
message produced.

JMSMessageID Specifies a unique ID for the message within the context of a JMS
provider installation.

JMS provider

JMSRedelivered Specifies whether the message has already been delivered but not
acknowledged.

JMS provider

JMSTimestamp Specifies the time when the JMS provider received the message. JMS provider

JMSCorrelationID A value that allows a client to define a correspondence between
two messages.

Client, if needed

JMSReplyTo Specifies a destination where the consumer should send a reply. Client, if needed

JMSType A value that can be evaluated by a message selector. Client, if needed

As you can see from reading through this table, message header fields serve a variety of
purposes: identifying a message, configuring the routing of messages, providing information
about message handling, and so on.

One of the most important fields, JMSDeliveryMode, determines the reliability of message
delivery. This field indicates whether a message is persistent.

Programming Objects

Chapter 2 • Client Programming Model 47

■ Persistent messages. are guaranteed to be delivered and successfully consumed exactly once.
Persistent messages are not lost if the message service fails.

■ Non-persistent messages are guaranteed to be delivered at most once. Non-persistent
messages can be lost if the message service fails.

Some message header fields are set by the JMS provider (the Message Queue broker and/or
client runtime) and others are set by the client. Message producers may need to configure
header values to obtain certain messaging behaviors; message consumers may need to read
header values in order to understand how the message was routed and what further processing
it might need.

Three of the header fields (JMSDeliveryMode, JMSExpiration, and JMSPriority) can be set at
two different levels:

■ For all messages produced by a specific message producer.
■ For each message when it is produced.

If these fields are set at more than one level, values set when producing a message override those
set for the message’s producer.

Names of constant used for message header fields vary with the language implementation. See
Open Message Queue 4.5 Developer’s Guide for Java Clients or Open Message Queue 4.5
Developer’s Guide for C Clients for more information.

Message Properties
A message can also include optional header fields, called properties, specified as property name
and property value pairs. Properties allow clients and providers to extend the message header
and can contain any information that the client or the JMS provider finds useful to identify and
process a message. Message properties allow a consuming client to ask that only those messages
be delivered which fit a given criteria. For instance, a consuming client might indicate an
interest for payroll messages concerning part-time employees located in New Jersey. The JMS
provider will not deliver messages that do not meet the specified criteria.

The JMS specification defines nine standard properties. Some of these are set by the client and
some by the JMS provider. Their names begin with the reserved characters “JMSX.” The client
or the JMS provider can use these properties to determine who sent a message, the identity of
the application sending a message, the state of the message, how often and when it was
delivered, tansaction identification, and so forth. These properties are useful to the JMS
provider in routing messages and in providing diagnostic information.

Message Queue defines a number of additional message properties. These properties are used to
identify compressed messages and how messages should be handled if they cannot be delivered.
For more information see “Managing Message Size” in Open Message Queue 4.5 Developer’s
Guide for Java Clients.

Programming Objects

Open Message Queue 4.5 Technical Overview • July 201148

Message Body
The message body contains the data that clients want to exchange.

The JMS message body type determines what the body may contain and how it should be
processed by the consumer, as specified in Table 2–4. The Session object includes a create
method for each type of message body.

TABLE 2–4 Message Body Types

Message Body Type Description

StreamMessage A message whose body contains a stream of Java primitive values. It is filled
and read sequentially.

MapMessage A message whose body contains a set of name-value pairs. The order of
entries is not defined.

TextMessage A message whose body contains a Java string, for example an XML message.

ObjectMessage A message whose body contains a serialized Java object.

BytesMessage A message whose body contains a stream of uninterpreted bytes.

Message A message that contains a header and properties but no body.

Java clients can set a property to have the client runtime compress the body of a message being
produced. The Message Queue runtime on the consumer side decompresses the message before
delivering it.

Producing a Message
Messages are sent or published by a message producer, within the context of a connection and
session. Producing a message is fairly straightforward: a client uses a message producer object
(MessageProducer) to send messages to a physical destination, represented in the API by a
destination object.

When you create the producer, you can specify a default destination that all the producer’s
messages are sent to. You can also specify default values for the message header fields that
govern persistence, priority, and time-to-live. These defaults are then used by all messages
issuing from that producer unless you override them by specifying an alternate destination
when sending the message or by setting alternate values for the header fields for a given
message.

The message producer can also implement a request-reply pattern by setting the JMSReplyTo
message header field. For more information, see “The Request-Reply Pattern” on page 51.

Producing a Message

Chapter 2 • Client Programming Model 49

In addition,Message Queue producers can specify symbolic topic destination names that use
wildcard characters. Messages issueing from such wildcard producers are sent to all
destinations that match the symbolic destination name. See “Supported Topic Destination
Names” in Open Message Queue 4.5 Administration Guide.

Consuming a Message
Messages are received by a message consumer, within the context of a connection and session.
A client uses a message consumer object (MessageConsumer) to receive messages from a
specified physical destination, represented in the API as a destination object.

When you create a consumer, you specify the destination from which it consumes messages.

Three factors affect how the broker delivers messages to a consumer:

■ Whether consumption is synchronous or asynchronous
■ Whether a selector is used to filter incoming messages
■ If messages are consumed from a topic destination, whether the subscriber is durable

These factors are described in the following sections.

Another factor that affects message delivery, the degree of reliability required by the messaging
application, is described in “Reliable Message Delivery” on page 53.

In addition,Message Queue consumers can specify symbolic topic destination names that use
wildcard characters. Messages are delivered to such wildcard consumers from all destinations
that match the symbolic destination name. See “Supported Topic Destination Names” in Open
Message Queue 4.5 Administration Guide.

Synchronous and Asynchronous Consumers
A message consumer can support either synchronous or asynchronous consumption of
messages.

■ Synchronous consumption means the consumer explicitly requests a message that has been
delivered to the client runtime and then consumes it.
Depending on the method used to request messages, a synchronous consumer can choose to
wait (indefinitely) until a message is delivered to the client runtime, to wait a specified
amount of time for a message, or to return immediately if there is no message available to be
consumed (messages that were successfully produced but which the broker has not finished
processing).

Consuming a Message

Open Message Queue 4.5 Technical Overview • July 201150

■ Asynchronous consumption means that the message is automatically handed off to a
message listener object (MessageListener) that has been registered with the consumer. The
client consumes the message when a session thread invokes the onMessage() method of the
message listener object.

Using Selectors to Filter Messages
A message consumer can use a message selector to have the message service deliver only those
messages whose properties (see “Message Properties” on page 48) match specific selection
criteria. You specify this criteria when you create the consumer.

Selectors use an SQL-like syntax to match against message properties. For example,

color = ”red’
size > 10

Java clients can also specify selectors when browsing a queue; this allows you to see which
selected messages are waiting to be consumed.

Using Durable Subscribers
A durable subscriber is one for which the broker retains messages even when the subscriber
becomes inactive.

Because the broker must maintain state for the subscriber and resume delivery of messages
when the subscriber is reactivated, the broker must be able to identify a given subscriber
throughout its comings and goings. The subscriber’s identity is constructed from the ClientID
property of the connection that created it and the subscriber name specified when you create
the subscriber.

The Request-Reply Pattern
You can combine producers and consumers in the same connection (or even session when
using the unified API). In addition, the JMS API allows you to implement a request-reply
pattern for your messaging operations by using temporary destinations. Temporary
destinations are explicitly created and destroyed programmatically. They are maintained by the
broker only for the duration of the connection in which they are created.

To set up the request-reply pattern you need to do the following:

1. Programmatically create a temporary destination where the consumer can send replies.
2. In the message to be sent, set the JMSReplyTo field of the message header to that temporary

destination.

The Request-Reply Pattern

Chapter 2 • Client Programming Model 51

When the message consumer processes the message, it examines the JMSReplyTo field of the
message to determine if a reply is required and sends the reply to the specified destination.

The request-reply mechanism saves an administrator the trouble of creating a destination
administered object or a physical destination for the reply, and makes it easy for the consumer
to respond to the request. This pattern is useful when the producer must be sure that a request
message has been handled before proceeding.

Figure 2–6 illustrates a request-reply pattern that sends messages to a topic and receives replies
in a temporary queue.

As the figure shows, MyTopicPublisher produces Msg1 to the destination MyTopic.
MyTopicSubsriber1 and MyTopicSubscriber2 consume the message and send a reply to
MyTempQueue, from which MyTempQueueReceiver retrieves it. This pattern might be useful for
an application that publishes pricing information to a large number of subscribers and which
queues their (reply) orders for sequential processing.

Temporary destinations last only as long as the connection in which they are created. While any
producer can produce messages to a temporary destination, the only consumers that can access
a temporary destination are those created in the same connection in which the temporary
destination was created.

FIGURE 2–6 Request/Reply Pattern

Broker

MyTopic

MyTempQueue

MyTopicPublisher
MyTopicSubscriber1

MyTopicSubscriber2

MyTempQueueReceiver

Msg1

Msg1

Msg1

Rply2

Rply1

Rply2

Rply1

The Request-Reply Pattern

Open Message Queue 4.5 Technical Overview • July 201152

Since the request/reply pattern depends on creating temporary destinations, you should not use
this pattern in the following cases:

■ If you anticipate that the connection in which the temporary destination was created might
terminate before the reply is sent.

■ If reply messages need to be persistent.

Reliable Message Delivery
Message delivery occurs in two hops: the first hop takes the message from the producer to a
physical destination on the broker; the second hop takes the message from that destination to
the consumer. Thus, a message can be lost in one of three ways: on its hop from the producer to
the broker, on its hop from the broker to the consumer, and while it’s in broker memory (if the
broker fails). Reliable delivery guarantees that delivery will not fail in any of these ways.

Two mechanisms are used to ensure reliable delivery:

■ The client can use acknowledgments or transactions to make sure that message production
and consumption is successful.

■ The broker can store messages in a persistent data store so that if the broker fails before the
message is consumed, the broker, upon recovery, can retrieve the stored copy of the message
and retry the operation.

The following sections describe these two aspects of ensuring reliability.

Note – Reliable delivery only applies to messages for which the JMSDeliveryMode message
header field indicates a persistent message.

Acknowledgements
Acknowledgements are messages sent between a client and the message service to ensure reliable
delivery of messages. Acknowledgements are used differently for producers and for consumers.

In the case of message production, the broker confirms that it has received the message, placed
it in its destination, and stored it persistently. The producer’s send() method blocks until it
receives this broker acknowledgement. Broker acknowledgements are transparent to the client
when persistent messages are sent.

In the case of message consumption, the client acknowledges that it has received delivery of a
message from a destination and consumed it, before the broker can delete the message from
that destination. JMS specifies different client acknowledgement modes that represent different
degrees of reliability.

Reliable Message Delivery

Chapter 2 • Client Programming Model 53

■ In the AUTO_ACKNOWLEDGE mode, the session automatically acknowledges each message
consumed by the client. The session thread blocks, waiting for the broker to confirm that it
has processed the client acknowledgement for each consumed message.

■ In the CLIENT_ACKNOWLEDGE mode, the client explicitly acknowledges after one or more
messages have been consumed by calling the acknowledge() method of a message object.
This causes the session to acknowledge all messages that have been consumed by the session
since the previous invocation of the method. The session thread blocks, waiting for the
broker to confirm that it has processed the client acknowledgement.
Message Queue extends this mode by providing a method that allows a client to
acknowledge receipt of one message only.

■ In DUPS_OK_ACKNOWLEDGE mode, the session acknowledges after a specified number of
messages (default is 10) have been consumed. The session thread does not block waiting for
the broker to confirm it has processed the client acknowledgement, because no broker
confirmation is required in this mode. Although this mode guarantees that no message will
be lost, it does not guarantee that no duplicate messages will be received, hence its name:
DUPS_OK.

For clients that are more concerned with performance than reliability, the Message Queue
service extends the JMS API by providing a NO_ACKNOWLEDGE mode. In this mode, the broker
does not track client acknowledgements, so there is no guarantee that a message has been
successfully processed by the consuming client. Choosing this mode may give you better
performance for non persistent messages that are sent to non-durable subscribers.

Transactions
A transaction is a way of grouping the production and/or consumption of one or more
messages into an atomic unit. The client and broker acknowledgement process described above
applies, as well, to transactions. In this case, however, when a transaction commits, it implicitly
performs the relevant broker or client acknowledgements. You cannot have an end-to-end
transaction encompassing both the production and consumption of the same message.

The JMS specification supports both local and distributed transactions, as described below.

Local Transactions
A session can be configured as transacted, and the JMS API provides methods for initiating,
committing, or rolling back local transactions.

As messages are produced or consumed within a local transaction, the message service tracks
the various sends and receives, completing these operations only when the JMS client issues a
call to commit the transaction. If a particular send or receive operation within the transaction
fails, an exception is raised. The client code can handle the exception by ignoring it, retrying the

Reliable Message Delivery

Open Message Queue 4.5 Technical Overview • July 201154

operation, or rolling back the entire transaction. When a transaction is committed, all its
operations are completed. When a transaction is rolled back, all successful operations are
cancelled.

The scope of a local transaction is always a single session. That is, one or more producer or
consumer operations performed in the context of a single session can be grouped into a single
local transaction.

Distributed Transactions
The JMS specification also supports distributed transactions. That is, the production and
consumption of messages can be part of a larger, distributed transaction that includes
operations involving other resource managers, such as database systems. A distributed
transaction manager, like the one supplied by GlassFish Server, must be available to support
distributed transactions.

In distributed transactions, the distributed transaction manager tracks and manages operations
performed by multiple resource managers (such as a message service and a database manager)
using a two-phase commit protocol defined in the Java Transaction API (JTA), XA Resource
API Specification. In the Java world, interaction between resource managers and a distributed
transaction manager are described in the JTA specification.

Support for distributed transactions means that messaging clients can participate in distributed
transactions through the XAResource interface defined by JTA. This interface defines a number
of methods used in implementing two-phase commit. While the API calls are made on the
client side, the JMS message service tracks the various send and receive operations within the
distributed transaction, tracks the transactional state, and completes the messaging operations
only in coordination with a distributed transaction manager—provided by a Java Transaction
Service (JTS). As with local transactions, the client can handle exceptions by ignoring them,
retrying operations, or rolling back an entire distributed transaction.

Note – Message Queue supports distributed transactions only when it is used as a JMS provider
in a Java Enterprise Edition (Java EE) application server. For additional information on how to
use distributed transactions, please consult the Java EE documentation furnished by your
application server provider.

Persistent Storage
The other aspect of reliability is ensuring that the broker does not lose persistent messages
before they are delivered to consumers. This means that when a message reaches its physical
destination, the broker must place it in a persistent data store. If the broker fails for any reason,
it can recover the message later and deliver it to the appropriate consumers.

Reliable Message Delivery

Chapter 2 • Client Programming Model 55

The broker must also persistently store durable subscriptions. Otherwise, in case of failure, it
would not be able to deliver messages to durable subscribers who become active after a message
has arrived in a topic destination.

Messaging applications that want to guarantee message delivery must specify messages as
persistent and deliver them either to topic destinations with durable subscribers or to queue
destinations.

Chapter 3, “The Message Queue Broker,” describes the default message store supplied by the
Message Queue service and how an administrator can set up and configure an alternate store.

A Message’s Journey Through the System
By way of summarizing the material presented so far, this section describes how a message is
delivered using the Message Queue service, from a producer to a consumer. In order to paint a
complete picture, a further detail is needed: The messages handled by the system in the course
of delivery fall into two categories:

■ Payload messages, which are the messages sent by producers to consumers.
■ Control messages, which are private messages passed between the broker and the client

runtime to ensure that payload messages are successfully delivered and to control the flow of
messages across a connection.

Message delivery is illustrated in Figure 2–7.

A Message’s Journey Through the System

Open Message Queue 4.5 Technical Overview • July 201156

Message delivery steps for a persistent, reliably delivered message are as follows:

Message Production
1. The client runtime delivers the message over the connection from the message producer to
the broker.

Message Handling and Routing
2. The broker reads the message from the connection and places it in the appropriate
destination.

3. The broker places the (persistent) message in the data store.

4. The broker confirms receipt of the message to the client runtime of the message producer.

FIGURE 2–7 Message Delivery Steps

Consuming
Client

Client
Runtime

Producing
Client

Client
Runtime

Broker

MyQDest

1

10

2

3

4

5

79

Data
Store

8

Payload messages

Control messages

6

A Message’s Journey Through the System

Chapter 2 • Client Programming Model 57

5. The broker determines the routing for the message.

6. The broker writes out the message from its destination to the appropriate connection,
tagging it with a unique identifier for the consumer.

Message Consumption
7. The message consumer’s client runtime delivers the message from the connection to the
message consumer.

8. The message consumer’s client runtime acknowledges consumption of the message to the
broker.

Message End-of-Life
9. The broker processes the client acknowledgement, and deletes the (persistent) message when
all acknowledgements have been received.

10. The broker confirms to the consumer’s client runtime that the client acknowledgement has
been processed.

The broker can discard a message before it is consumed if the administrator deletes the message
from a destination or if the administrator removes or redefines a durable subscriber, thereby
causing a message in a topic destination to be removed without it being delivered. The broker
can also discard a message before it is consumed if the message has expired, if memory limits
have been reached, or if delivery fails due to a client exception. If you don't want a message
discarded in these situations, you can have the broker store the messages in a special destination
called the dead message queue. Storing messages in the dead message queue allows you to
troubleshoot the system and recover messages in any of these situations.

Design and Performance
The behavior of a Message Queue application depends on many factors: client design,
connection configuration, broker configuration, broker tuning, and resource management.
Some of these are the responsibility of the application developer; others are the concern of the
Message Queue administrator.

In the best of possible worlds the developer should be aware of how the Message Queue service
can support and scale the application design, and the administrator should be aware of the
application's design goals when it comes time to tune the application. Messaging behavior can
be optimized through redesign as well as through careful monitoring and tuning. Thus, a key
aspect of creating a good Message Queue application is for the developer and the administrator
to understand what can be realized at each stage of the application life cycle and to share
information about desired and observed behavior.

Design and Performance

Open Message Queue 4.5 Technical Overview • July 201158

Chapter 3, “The Message Queue Broker,” explains how you can use the Message Queue service
to support, manage, and tune messaging performance.

Working with SOAP Messages
Simple Object Access Protocol (SOAP) allows for the exchange of structured data (specified by
an XML schema) between two peers in a distributed environment. Sun’s implementation of
SOAP does not currently support reliable SOAP messaging nor does it support publishing
SOAP messages. However, you can use the Message Queue service to achieve reliable SOAP
messaging and, if desired, to publish SOAP messages. The Message Queue service does not
deliver SOAP messages directly, but it allows you to wrap SOAP messages into JMS messages, to
produce and consume these messages like normal JMS messages, and to extract the SOAP
message from the JMS message.

Message Queue provides SOAP support through two packages: javax.xml.messaging and
com.sun.messaging.xml. You can use classes implemented in these libraries to receive a SOAP
message, to wrap a SOAP message as a JMS message, and to extract a SOAP message from a JMS
message. The Java EE platform provides the package java.xml.soap, which you can use to
assemble and disassemble a SOAP message.

To achieve reliable SOAP messaging you need to implement the following sequence of actions:

1. Use the Message Transformer utility to convert the SOAP message into a JMS message.
2. Send the JMS message to the desired destination.
3. Consume the JMS message asynchronously or synchronously.
4. After the JMS message is consumed, use the Message Transformer utility to convert it into a

SOAP message.
5. Use the SOAP with Attachments API for Java (SAAJ) API (defined in the java.xml.soap

package) to disassemble the SOAP message.

For detailed information about SOAP messages and their processing, see Chapter 5, “Working
with SOAP Messages,” in Open Message Queue 4.5 Developer’s Guide for Java Clients.

Java and C Clients
Message Queue provides a C API to its messaging services to enable legacy C applications and
C++ applications to participate in JMS-based messaging.

The JMS programming model is the foundation for the design of a Message Queue C client.
Open Message Queue 4.5 Developer’s Guide for C Clients explains how this model is
implemented by the C data types and functions.

Like the Java interface, the C interface supports the following features:

Java and C Clients

Chapter 2 • Client Programming Model 59

■ Publish/subscribe and point-to-point connections
■ Synchronous and asynchronous receives
■ CLIENT, AUTO, and DUPS_OK acknowledgement modes
■ Local and distributed transactions
■ Session recover
■ Temporary topics and queues
■ Message selectors

However, it is important to understand that the Java Message Service specification is a standard
for Java clients only; thus the C Message Queue API is specific to the Message Queue provider
and cannot be used with other JMS providers. A messaging application that includes a C client
cannot be handled by another JMS provider.

The C interface, does not support the following features:

■ The use of administered objects
■ Map, stream, or object message types
■ Consumer-based flow control
■ Queue browsers
■ JMS application server facilities (Connection Consumer, distributed transactions)
■ Receiving or sending SOAP messages
■ Receiving or sending compressed JMS messages
■ Auto-reconnect or failover, which allows the client runtime to automatically reconnect to a

broker if a connection fails
■ The NO_ACKNOWLEDGE mode

Java and C Clients

Open Message Queue 4.5 Technical Overview • July 201160

The Message Queue Broker

This chapter provides a more detailed view of the Message Queue broker, which was introduced
in “The Message Queue Service” on page 29. The chapter examines the services provided by the
broker, the tools you use to configure these services, and the administrative tasks required to
support these services.

The chapter includes the following sections:

■ “Broker Services” on page 61
■ “Administration Tools” on page 76
■ “Administration Tasks” on page 79

Broker Services
Figure 1–6 shows the different elements of the Message Queue service. Chapter 2, “Client
Programming Model,” described the programming model and how clients use the Java and C
APIs to interact with the Message Queue client runtime, the part of the message service that is
directly accessed by client applications. This chapter focuses on the broker services, the part of
the message service that is accessed through administration tools.

The broker is the centerpiece of the Message Queue service shown in Figure 1–6. The broker
provides the set of services that enable secure, reliable messaging:

■ Connection services that manage the physical connections between a broker and its clients
that provide transport for incoming and outgoing messages. See “Connection Services” on
page 62.

■ Message delivery services that route and deliver JMS messages as well as control messages
used by the message service to support reliable delivery. See “Message Delivery Services” on
page 64.

■ Persistence services that manage the writing of data to persistent storage and its retrieval
from persistent storage. See “Persistence Services” on page 67.

3C H A P T E R 3

61

■ Security services that authenticate users connecting to the broker and authorize their
actions. See “Security Services” on page 68

■ Clustering services that support the grouping of brokers into a cluster to achieve scalability
and availability. See Chapter 4, “Broker Clusters.”

■ Monitoring services that generate metrics and diagnostic information and write this
information to a specified output channel. See “Monitoring Services” on page 73.

The sections that follow describe each of the broker services. These services are configured by
setting broker configuration properties. Broker properties are specified in different
configuration files and can also be set using options of the broker startup command. Chapter 4,
“Configuring a Broker,” in Open Message Queue 4.5 Administration Guide describes the broker
configuration files and explains the order of precedence by which property values in one
configuration file can be used to override values set in a different file. Properties set with the
startup command override all other settings.

Connection Services
You use connection-related properties to configure and manage the physical connections
between a broker and its clients. As shown in Figure 1–6 both application clients and
administration clients can connect to the broker. The JMS specification does not dictate that
providers implement any specific wire protocols. Message Queue connection services, used by
application clients and administration clients to connect to the broker, are currently layered on
top of TCP, TLS, HTTP, or HTTPS protocols. TLS (Transport Layer Security) is a successor to
and compatible with SSL (Secure Socket Layer).

There are two general types of connection services:

■ NORMAL: Services that provide JMS support and allow clients to connect to the broker (jms,
ssljms, http, or https) and are layered on top of TCP, TLS, HTTP, or HTTPS protocols,
respectively. (Services layered on top of HTTP allow messages to pass through firewalls.)

■ ADMIN: Services that allow administrators to connect to the broker (admin, ssladmin) and
are layered on top of TCP or TLS protocols.

Connection services are available through dedicated ports that can be dynamically assigned by
the broker’s Port Mapper (see “Port Mapper Service” on page 63) or statically assigned by the
administrator. By default, when you start the broker, the jms and admin services are up and
running. Additionally, you can configure a broker to run any or all of the connection services.

Each connection service is multi-threaded, supporting multiple connections, and each service
supports specific authentication and authorization (access control) features. See “Security
Services” on page 68 for more information.

Broker Services

Open Message Queue 4.5 Technical Overview • July 201162

Should a connection fail, the Message Queue service can automatically retry connecting the
client to the same broker or to a different broker if this feature is enabled. For more information,
see the description of the automatic reconnect feature in Appendix B, “Message Queue
Features”

The connections provided by Message Queue connection services can be configured to specify
which brokers to connect to, how to handle reconnection, message flow control, and so on. For
additional information about how connections can be configured, see “Connection Factories
and Connections” on page 45.

Connection configuration can be performed by both administrators and in client application
code:

■ An administrator creates connection factory administered objects that encapsulate
connection behaviors. In addition, an administrator can use broker properties to activate
non-default connection services, to assign static ports if required, to configure threading,
and to specify a host to connect to if multiple network interfaces are used. An administrator
can also specify a ping interval to test whether the client is accessible; this is useful in
managing resources.

■ Client code can instantiate configuration factory objects and set their attributes to achieve
desired connection behaviors. These attributes specify non-default connection services,
hosts, ports, a list of brokers to connect to in case reconnection is required, and
reconnection behavior. The client can also specify a ping interval to test for failed
connections.

A client can connect to the Message Queue service through a firewall. This can be done either by
having the firewall administrator open a specific port and then connecting to that (static) port
or by using the HTTP or HTTPS service as summarized in Appendix B, “Message Queue
Features.”

Port Mapper Service
Connection services are dynamically assigned a port by a common Port Mapper service that
resides at a the broker’s main port, 7676. When the Message Queue client runtime sets up a
connection with the broker, it first contacts the Port Mapper, requesting a port number for the
connection service it has chosen.

You can override the Port Mapper by assigning a static port number for the jms, ssljms, admin
and ssladmin connection services when configuring these services. However, static ports are
generally used only in special situations, such as in making connections through a firewall, and
are not generally recommended.

Broker Services

Chapter 3 • The Message Queue Broker 63

Thread Pool Management
Each connection service is multithreaded, supporting multiple connections. The threads
needed for these connections are maintained by the broker in a pool. How they are allocated
depends on the values you specify for the minimum and maximum thread values, and on the
threading model you choose.

You can set broker properties to specify a minimum number and maximum number of threads.
As threads are needed by connections, they are added to the thread pool for the service
supporting that connection. The minimum specifies the number of threads available to be
allocated. When the available threads exceeds this minimum threshold, the system will shut
down threads as they become free until the minimum is reached again, thereby saving on
memory resources. Under heavy loads, the number of threads might increase until the pool’s
maximum number is reached; at this point, new connections are rejected until a thread
becomes available.

The threading model you choose specifies whether threads are dedicated to a single connection
or shared by multiple connections:
■ In the dedicated model, each connection to the broker requires two threads: one for

incoming messages and one for outgoing messages. This limits the number of possible
connections but provides high performance.

■ In the shared model, connections are processed by a shared thread when sending or
receiving messages. Because each connection does not require dedicated threads, this model
increases the number of possible connections, but adds some overhead for thread
management and thereby impacts performance.

Message Delivery Services
Once clients are connected to the broker, the routing and delivery of messages can proceed. In
this phase, the broker is responsible for creating and managing different types of physical
destinations, for ensuring a smooth flow of messages, and for using resources efficiently. The
broker properties related to routing and delivery are used by the broker to manage these tasks in
a way that suits your application’s needs.

Physical Destinations
A physical destination on the broker is a memory location where messages are stored before
being delivered to a message consumer. There are four kinds of physical destinations:
■ Admin-created destinations are created by an administrator using Message Queue

administration tools. Admin-created destinations correspond to destination administered
objects created by an administrator and accessed by client applications by using a JNDI
lookup. Admin-created destinations can also correspond to destination objects created
programmatically by a client application. You use Message Queue administration tools to
set or update properties for each admin-created destination.

Broker Services

Open Message Queue 4.5 Technical Overview • July 201164

■ Auto-created destinations are automatically created by the broker whenever a message
consumer or producer attempts to access a nonexistent destination. These are typically used
during development. You can set a broker property to disallow the creation of such
destinations. You set broker properties to configure all auto-create destinations on a
particular broker.
An auto-created destination is automatically destroyed by the broker when it is no longer
being used: that is, when it has no consumer clients and no longer contains any messages. If
a broker restarts, it only recreates this kind of destination if it contains persistent messages.

■ Temporary destinations are explicitly created and destroyed programmatically by client
applications that need a destination at which to receive replies to messages. As their name
implies, these destinations are temporary. They are maintained by the broker only for the
duration of the connection in which they are created.
Temporary destinations are only stored persistently only if the consumer of the destination
is set to automatically reconnect in the event of failure. Otherwise, they are not recreated
when a broker is restarted. Nevertheless, temporary destinations are visible to
administration tools.

■ The dead message queue is a specialized destination, created automatically at broker
startup and used to store dead messages for diagnostic purposes. You can set properties for
the dead message queue using the imqcmd utility.

Managing Destinations
Managing a destination involves one or more of the following tasks:
■ Creating, pausing, resuming, or destroying a destination
■ Listing all destinations on a broker
■ Displaying information about the state and properties of a destination
■ Displaying metrics information for a destination
■ Compacting disk space used to persist messages for a destination
■ Updating a physical destination’s properties

Management tasks vary with the kind of destination being managed: admin-created,
auto-created, temporary, or dead message queue. For example, temporary destinations do not
need to be explicitly destroyed; auto created properties are configured using broker
configuration properties which apply to all auto-created destinations on that broker.

Configuring Physical Destinations
For optimal performance, you can set properties when creating or updating physical
destinations. Properties that can be set include the following:
■ The type and name of the destination.
■ Individual and aggregate limits for destinations (the maximum number of messages, the

maximum number of total bytes, the maximum number of bytes per message, the
maximum number of producers).

Broker Services

Chapter 3 • The Message Queue Broker 65

■ What the broker should do when individual or aggregate limits are exceeded.
■ The maximum number of messages to be delivered in a single batch.
■ Whether deleted messages for a destination should be sent to the dead message queue.
■ In the case of a broker cluster, whether a destination should be propagated to other brokers

in the cluster.

For a queue destination you can also configure the maximum number of active and back up
consumers and you can specify (for broker clusters) whether delivery to a local queue is
preferred.

You can also configure the limits and behavior of the dead message queue. Note, however, that
default properties for this queue differ from those of a standard queue.

Managing Memory
Destinations can consume significant resources, depending on the number and size of messages
they handle and on the number and durability of the consumers that register; therefore, they
need to be managed closely to guarantee good messaging service performance and reliability.

You can set properties to prevent a broker from being overwhelmed by incoming messages and
to prevent the broker from running out of memory. The broker uses three levels of memory
protection to keep the message service operating as resources become scarce: destination limits,
system-wide limits, and system memory thresholds. Ideally, if destination limits and
system-wide limits are set appropriately, critical system-memory thresholds should never be
breached.

Destination Message Limits

You can set destination properties to manage memory and message flow for each destination.
For example, you can specify the maximum number of producers allowed for a destination, the
maximum number (or size) of messages allowed in a destination, and the maximum size of any
single message.

You can also specify how the broker should respond when any such limits are reached: to slow
producers, to throw out the oldest messages, to throw out the lowest-priority messages, or to
reject the newest messages.

System-Wide Message Limits

You can also use properties to set limits that apply to all destinations on a broker: you can
specify the total number of messages and the memory consumed by all messages. If any of the
system-wide message limits are reached, the broker rejects new messages.

Broker Services

Open Message Queue 4.5 Technical Overview • July 201166

System Memory Thresholds
Finally, you can use properties to set thresholds at which the broker takes increasingly serious
action to prevent memory overload. The action taken depends on the state of memory
resources: green (plenty of memory is available), yellow (broker memory is running low),
orange (broker is low on memory), red (broker is out of memory). As the broker’s memory
state progresses from green to red, the broker takes increasingly serious actions:
■ It throws out in-memory copies of persistent messages in the data store.
■ It throttles back producers of non-persistent messages, eventually stopping the flow of

messages into the broker. Persistent message flow is automatically limited by the
requirement that each message be acknowledged by the broker.

Persistence Services
For a broker to recover in case of failure, it needs to recreate the state of its message delivery
operations. To be able to do this, it must save state information to a data store. When the broker
restarts, it uses the saved data to recreate destinations and durable subscriptions, to recover
persistent messages, to roll back open transactions, and to recreate its routing table for
undelivered messages. It can then resume message delivery.

The Message Queue service supports both file-based and JDBC compliant persistence modules
(see Figure 3–1). File-based persistence is the default.

File-Based Persistence
File-based persistence is a mechanism that uses individual files to store persistent data. If you
use file-based persistence you can set broker properties to do the following:

■ Compact the data store to alleviate fragmentation as messages are added and removed.
■ Synchronize the in-memory state with the physical storage device on every write. This helps

eliminate data loss due to system crashes.

FIGURE 3–1 Persistence Support

Broker

File-based
Data Store

Physical
Destinations

JDBC-based
Data Store

Broker Services

Chapter 3 • The Message Queue Broker 67

■ Manage the allocation of messages to data store files and manage the resources needed for
file management and storage.

File-based persistence is generally faster that JDBC-based persistence; however, some users
prefer the redundancy and administrative control provided by a JDBC-compliant store.

JDBC-Based Persistence
JDBC-Based persistence uses a Java Database Connectivity (JDBC) interface to connect the
broker to a JDBC-compliant data store. To have the broker access a data store through a JDBC
driver you must do the following:

■ Set JDBC-related broker configuration properties. You use these to specify the JDBC driver
used, to authenticate the broker as a JDBC user, to create needed tables, and so on.

■ Use the imqdbmgr utility to create a data store with the proper schema.

Complete procedures for completing these tasks and related configuration properties are
detailed in the Chapter 4, “Configuring a Broker,” in Open Message Queue 4.5 Administration
Guide.

Security Services
The Message Queue service supports authentication and authorization (access control) for each
broker instance, and also supports encryption:

■ Authentication ensures that only verified users can establish a connection to the broker.
■ Authorization specifies which users or groups have the right to access resources and to

perform specific operations.
■ Encryption protects messages from being tampered with during delivery over a connection.

Authentication and authorization depend upon a repository that contains information about
the users of the messaging system—their names, passwords, and group memberships. In
addition, to authorize specific operations for a user or group, the broker must check an access
control properties file that specifies which operations a user or group can perform. You are
responsible for setting up the information the broker needs to authenticate users and authorize
their actions.

Figure 3–2 shows the components needed by the broker to provide authentication and
authorization.

Broker Services

Open Message Queue 4.5 Technical Overview • July 201168

As Figure 3–2 shows, you can store user data in a flat file user repository that is provided with
the Message Queue service, you can access an existing LDAP repository, or you can plug in a
Java Authentication and Authorization Service (JAAS) service. You set a broker property to
indicate your choice.

■ If you choose a flat-file repository, you must use the imqusermgr utility to manage the
repository. This option is easy to use and built-in.

■ If you want to use an existing LDAP server, you use the tools provided by the LDAP vendor
to populate and manage the user repository. You must also set properties in the broker
instance configuration file to enable the broker to query the LDAP server for information
about users and groups.
The LDAP option is better if scalability is important or if you need the repository to be
shared by different brokers. This might be the case if you are using broker clusters.

■ If you want to plug-in an existing JAAS authentication service, you need to set the
corresponding properties in the broker instance configuration file.

Authentication and Authorization
When a client requests a connection, the client must supply a user name and password. The
broker compares the specified name and password to those stored in the user repository. On
transmitting the password from client to broker, the passwords are encoded using either base 64

FIGURE 3–2 Security Manager Support

Broker

Access Control
Properties File

Physical
Destinations

accesscontrol.properties

Flat File User
Repository

Authorization

Authentication
JAAS

Authentication
Service

LDAP
Server User
Repository

Broker Services

Chapter 3 • The Message Queue Broker 69

encoding or message digest (MD5) hashing. MD5 is used for a flat file repository; base 64 is
required for LDAP repositories. If using LDAP you may want to use the secure TLS protocol.
You can set broker properties to configure the type of encoding used by each connection service
separately or to set the encoding on a broker-wide basis.

When a user attempts to perform an operation, the broker checks the user’s name and group
membership (from the user repository) against those specified for access to that operation (in
the access control properties file). The access control properties file specifies permissions to
users or groups for the following operations:

■ Connecting to a broker
■ Accessing destinations: creating a consumer, a producer, or a queue browser for any given

destination or all destinations
■ Auto-creating destinations

You set broker properties to specify the following information:

■ Whether access control is enabled
■ The name of the access control file
■ How passwords should be encoded
■ How long the system should wait for a client to respond to an authentication request from

the broker
■ Information required by secure connections

JAAS-Based Authentication
In addition to the file-based and LDAP-based built-in authentication mechanisms, Message
Queue also supports the Java Authentication and Authorization Service (JAAS), which allows
you to plug a variety of services into the broker to authenticate Message Queue clients.

JAAS defines an abstraction layer between an application and an authentication mechanism,
allowing the desired mechanism to be plugged in with no disruption or change to application
code. For the Message Queue service, the abstraction layer lies between the broker and the
authentication provider. By setting a few broker properties, it is possible to plug in any
JAAS-compliant authentication service and to upgrade or change this service with no
disruption or change to broker code.

The service to be plugged in consists of a LoginModule and of logic that performs the
authentication. A JAAS configuration file contains the location of the LoginModule. When the
broker starts up it locates this file and uses information in the file to determine which
LoginModules it will use to perform the authentication. The fact that the broker plugs in an
authentication service is transparent to the client; the client continues to pass authentication
information to the broker as before and gains access to broker services if the identifying
information (user name, password) is authenticated by the plugged in service.

Broker Services

Open Message Queue 4.5 Technical Overview • July 201170

For complete information about JAAS-based authentication, see “Using JAAS-Based
Authentication” in Open Message Queue 4.5 Administration Guide.

Encryption
To encrypt messages sent between clients and broker, you need to use a connection service
based on the Secure Socket Layer (SSL) standard. SSL provides security at a connection level by
establishing an encrypted connection between an SSL-enabled broker and an SSL-enabled
client.

You can set broker properties to specify the security properties of the SSL keystore to be used
and the name and location of a password file.

For more information, see “Message Encryption” in Open Message Queue 4.5 Administration
Guide

Bridge Services
Message-Oriented Middleware (MOM) systems use a broad spectrum of technologies and
standards to provide messaging services. Often, these technologies and standards are
incompatible, leading to MOM systems that cannot communicate with each other in a larger
enterprise application context.

To alleviate this inability to communicate, Message Queue incorporates bridge services, which
are overseen by the Bridge Service Manager, an application that runs in same JVM as a broker.
The Bridge Service Manager supports individual bridge services of various types. Each type of
bridge service provides connectivity at the broker level to a MOM technology or standard that
would otherwise be unavailable in Message Queue.

At present, Message Queue provides two bridge services, the JMS bridge service and the
STOMP bridge service.

JMS Bridge Service
Because the JMS specification does not dictate the communication protocol between brokers
and clients, each JMS provider (including Message Queue) has defined and uses its own
propriety protocol. This situation has led to non-interoperability across JMS providers.

The JMS bridge service in Message Queue closes this gap by enabling a Message Queue broker
to map its destinations to destinations in external JMS providers. This mapping effectively
allows the Message Queue broker to communicate with clients of the external JMS provider.

The JMS bridge service supports mapping destinations to external JMS providers that:

■ Are JMS 1.1 compliant
■ Support JNDI administrative objects

Broker Services

Chapter 3 • The Message Queue Broker 71

■ Use connection factories of type javax.jms.ConnectionFactory or
javax.jms.XAConnectionFactory

■ Support the XA interfaces as a resource manager for transacted mapping

As an administrative and management convenience, the JMS bridge service supports the
creation of any number of JMS bridges in a broker. Each JMS bridge in the broker is identified
by a unique name, has its own configuration, and is managed separately from other JMS bridges
in the broker.

A JMS bridge consists of two primary components:

■ One or more links, each of which maps between a destination in the Message Queue broker
and a destination in an external JMS provider or in another Message Queue broker.

■ A default Dead Message Queue (DMQ) where undeliverable messages are sent. Additional,
special-purpose DMQs can also be specified.

To provide destination mapping, each link consists of:

■ A source: the destination from which the JMS bridge receives messages. The source consists
of a connection factory for creating connections to a JMS provider and a destination in that
provider.

■ A target: the destination to which the JMS bridge forwards messages received from the
source. The target consists of a connection factory for creating connections to a JMS
provider and a destination in that provider. Additionally, a target can optionally specify a
message transformer that alters messages from the source before forwarding them to the
target destination.

Links are unidirectional. Links that have an external JMS provider or another Message Queue
broker as their source are called inbound links, and links that have the Message Queue broker as
their source are called outbound links.

To provide flexible, high-performing message transfer between mapped destinations, a JMS
bridge offers these features:

■ Pooled, shared, and dedicated Connections
■ Transactional message transfer
■ JMS bridges in enhanced (high availability) broker clusters
■ Message transformation during message delivery
■ JMSReplyTo header processing
■ Dead Message Queue (DMQ) processing

STOMP Bridge Service
The STOMP (Streaming Text Oriented Messaging Protocol) open source project at
http://stomp.codehaus.org defines a simple communication protocol that clients written in
any language can use to communicate with any messaging provider that supports the STOMP
protocol.

Broker Services

Open Message Queue 4.5 Technical Overview • July 201172

http://stomp.codehaus.org

Message Queue provides support for the STOMP protocol through the STOMP bridge service.
This service enables a Message Queue broker to communicate with STOMP clients.

The STOMP bridge service provides the features needed to fully integrate STOMP messaging
into the JMS messaging environment of Message Queue:

■ Registration with the Message Queue Port Mapper service so that STOMP clients can
discover the service dynamically

■ Support for TCP and SSL/TLS connections, including SSL/TLS connections requiring client
authentication

■ Automatic conversion of STOMP frame messages to and from JMS BytesMessage and
TextMessage types

■ Extensible message handling and transformation (by defining a custom message
transformer)

■ Support for the full STOMP protocol, including the STOMP JMS bindings

Monitoring Services
The broker includes components for monitoring and diagnosing application and broker
performance. These include the components shown in the following figure:

■ Components that generate data: a metrics generator and broker code that logs events.
■ A logger component that writes out information to a number of output channels.
■ A metrics message producer that sends JMS messages containing metrics information to

topic destinations for consumption by JMS monitoring clients.
■ A comprehensive set of Java Management Extensions (JMX) MBeans that expose broker

resources using the JMX API
■ Support for the Java ES Monitoring Framework

The following subsections describe these components.

Broker Services

Chapter 3 • The Message Queue Broker 73

Metrics Generator
The metrics generator provides information about broker activity, such as message flow in and
out of the broker, the number of messages in broker memory and the memory they consume,
the number of open connections, and the number of threads being used.

You can set broker properties to turn the generation of metric data on and off, and to specify
how frequently metrics reports are generated.

Logger
The Message Queue logger takes information generated by broker code and the metrics
generator and writes that information to standard output (the console), to a log file, and, on
Solaris platforms, to the syslog daemon process in case of errors.

You can set broker properties to specify the type of information gathered by the logger as well as
the type written to each of the output channels. In the case of a log file, you can also specify the
point at which the log file is closed and output is rolled over to a new file. Once the log file
reaches a specified size or age, it is saved and a new log file created.

FIGURE 3–3 Monitoring Service Support

Broker
Code

Metrics
Generator

Logger

ERROR
WARNING

INFO

Output Channels

Broker
Resources

Log File

Console

syslog (Solaris)

Metrics
Message
Producer

JMX
MBeans JMX Client Application

Java ES
Monitoring
Framework

Java ES Monitoring Console

Topic Destinations

Broker Services

Open Message Queue 4.5 Technical Overview • July 201174

For details about how to configure the logger and how to use it to obtain performance
information, see “Configuring and Using Broker Logging” in Open Message Queue 4.5
Administration Guide.

Metrics Message Producer
The metrics message producer shown in Figure 3–3 receives information from the metrics
generator at regular intervals and writes the information into messages, which it then sends to
one of a number of metric topic destinations, depending on the type of metric information
contained in the message.

Message Queue clients subscribed to these metric topic destinations can consume the messages
and process the metric data contained in the messages. This allows developers to create custom
monitoring tools to support messaging applications. For details of the metric quantities
reported in each type of metrics message, see Chapter 21, “Metrics Information Reference,” in
Open Message Queue 4.5 Administration Guide. For information about how to configure the
production of metrics messages, see Chapter 4, “Using the Metrics Monitoring API,” in Open
Message Queue 4.5 Developer’s Guide for Java Clients and “Using the Message-Based Monitoring
API ” in Open Message Queue 4.5 Administration Guide.

JMX MBeans
The broker implements a comprehensive set of Java Management Extensions (JMX) MBeans
that represent the broker's manageable resources. Using the JMX API, you can access these
MBeans to perform broker configuration and monitoring operations programmatically from
within a Java application.

In this way, the MBeans provide a Java application access to data values representing static or
dynamic properties of a broker, connection, destination, or other resource. The application can
also receive notifications of state changes or other significant events affecting the resource.

For more information see “JMX-Based Administration” on page 78.

Java ES Monitoring Framework Support
Message Queue supports the Sun Java Enterprise System (Java ES) Monitoring Framework,
which allows Java Enterprise System components to be monitored using a common graphical
interface. This interface is implemented by a web-based console called the Sun Java System
Monitoring Console. If you are running Message Queue along with other Java ES components,
you might find it more convenient to use a single interface to manage all these components.

The Java ES monitoring framework defines a common data model (CMM) to be used by all Java
ES component products. This model enables a centralized and uniform view of all Java ES
components. Message Queue exposes the following objects to the Java ES monitoring
framework:

■ the installed product

Broker Services

Chapter 3 • The Message Queue Broker 75

■ the broker instance name
■ the broker port mapper
■ each connection service
■ each physical destination
■ the persistent store
■ the user repository

Each one of these objects is mapped to a CMM object whose attributes can be monitored using
the Java ES monitoring console. At runtime, administrators can use the console to view
performance statistics, create rules to monitor automatically, and acknowledge alarms. For
detailed information about the mapping of Message Queue objects to CMM objects, see the Sun
Java Enterprise System Monitoring Guide.

Using the Java ES Monitoring Framework will not impact broker performance because all the
work of gathering metrics is done by the monitoring framework, which pulls data from the
broker's existing monitoring data infrastructure.

Administration Tools
This section describes the tools you use to configure and manageMessage Queue broker
services. The tools fall into two categories:

■ “Built-in Administration Tools” on page 76
■ “JMX-Based Administration” on page 78

Built-in Administration Tools
The following illustration shows the administration tools provided by Message Queue for
configuring and managing broker services.

Administration Tools

Open Message Queue 4.5 Technical Overview • July 201176

The administration tools include the following command line interfaces:

■ Broker utility (imqbrokerd). Used to start a broker. You can use options to the imqbrokerd
command to specify whether brokers should be connected in a broker cluster and to specify
additional startup configuration information.

■ Command utility (imqcmd). Used after starting a broker to manage broker resources, such
as connection services, connections, durable subscriptions, transactions, physical
destinations, and so forth.

■ Object Manager utility (imqobjmgr). Used to create, list, update, and delete administered
objects in a JNDI object store.

FIGURE 3–4 Message Queue Administration Tools

Broker Host

Physical
Destinations

Configuration
Files and Logs

JDBC-based
Data Store

Administered
Objects

Certificate
Store

Flat File User
Repository

Key Tool Utility
imqkeytool

Object Manager
Utility

imqobjmgr

Service
Administrator

Utility
imqsvacadmin
(Windows Only)

Broker Utility
imqbrokered

Command Utility
imqcmd

User Manager
Utility

imqusermgr

Database
Manager Utility
imqdbmgr

Remote
Admin Host

Administration
Console

Broker

Administration Tools

Chapter 3 • The Message Queue Broker 77

■ User Manager utility (imqusermgr). Used to populate a file-based user repository for user
authentication and authorization.

■ Database Manager utility (imqdbmgr). Used to create and manage a JDBC-based persistent
data store. (The built-in file store requires no external management.)

■ Key Tool utility (imqkeytool). Used to generate self-signed broker certificates needed for
SSL authentication.

■ Service Administrator utility (imqsvcadmin). Used to install, query, and remove a broker
as a Windows service.

In addition to the command line utilities shown in Figure 3–4,Message Queue administration
tools also include the GUI-based Administration Console. The Administration Console
combines some of the capabilities of the Command utility (imqcmd) and the Object Manager
utility (imqobjmgr). You can use it to do the following:

■ Manage a broker, its connection services, and other resources.
■ Create, update, and delete physical destinations.
■ Connect to a JNDI object store, add administered objects to the store, and manage them.

JMX-Based Administration
To serve customers who need a standard programmatic means to monitor and access the
broker, Message Queue also supports the Java Management Extensions (JMX) architecture,
which allows a Java application to manage broker resources programmatically.

■ Resources include everything that you can manipulate using the Command utility (imqcmd)
and the Message Queue Admin Console: the broker, connection services, connections,
destinations, durable subscribers, transactions, and so on.

■ Management includes the ability to dynamically configure and monitor resources, and the
ability to obtain notifications about state changes and error conditions.

The JMX specification defines an architecture for the instrumentation and programmatic
management of distributed resources. This architecture is based on the notion of a managed
bean, or MBean: a Java object, similar to a JavaBean, representing a resource to be managed.
Message Queue MBeans are associated with individual resources such as connection services,
connections, or destinations, or with whole categories of resources, such as the set of all
destinations on a broker. There are separate configuration MBeans and monitor MBeans for
setting a resource’s configuration properties and monitoring its runtime state.

Java applications access MBeans through remote method invocation (RMI) protocols. The
MBeans are hosted by an MBean server in the broker, which functions as an MBean container.
The MBean server is accessed by means of a RMI connector, which is used to obtain an MBean
server connection, which, in turn, provides access to the individual MBeans.

Administration Tools

Open Message Queue 4.5 Technical Overview • July 201178

The JMX specification defines an architecture that enables the programmatic management of
any distributed resource. This architecture is defined by design patterns, APIs, and various
services.

JMX-based administration provides dynamic, fine grained, programmatic access to the broker.
You can use this kind of administration in a number of ways.

■ You can include JMX code in your JMS client application to monitor application
performance and, based on the results, to reconfigure the Message Queue resources you use
to improve performance.

■ You can write JMX client applications that monitor the broker to identify use patterns and
performance problems, and you can use the JMX API to reconfigure the broker to optimize
performance.

■ You can write a JMX client application to automate regular maintenance tasks, rolling
upgrades, and so on.

■ You can write a JMX client application that constitutes your own version of the Command
utility (imqcmd), and you can use it instead of imqcmd.

■ You can use the standard Java Monitoring and Management Console (jconsole) that
provides standard web browser access to the broker's MBeans.

JMX is the Java standard for building management applications and is widely used for
managing Java EE infrastructure. If your Message Queue client is a part of a larger Java EE
deployment, JMX support allows you to use a standard programmatic management framework
throughout your Java EE application. Message Queue is based on the JMX 1.2 specification,
which is part of JDK 1.5.

To manage a Message Queue broker using the JMX architecture, see Open Message Queue 4.5
Developer’s Guide for JMX Clients. For information on JMX infrastructure and configuring the
broker's JMX support, see Appendix D, “JMX Support,” in Open Message Queue 4.5
Administration Guide.

Administration Tasks
This section describes the tasks that you need to complete to support a Message Queue
development or a production environment.

Supporting a Development Environment
In developing a client component, it’s best to keep administrative work to a minimum. The
Message Queue product is designed to help you do this and can be used out of the box. It should
be enough just to start the broker. The following practices allow you to focus on development:

Administration Tasks

Chapter 3 • The Message Queue Broker 79

■ Use default implementations of the data store (built-in file persistence), the user repository
(file-based), and access control properties file. These are adequate for developmental testing.
The default user repository is created with default entries that allow you to use the broker
immediately after installation. You can use the default user name (guest) and password
(guest) to authenticate a client.

■ Use a simple file-system object store by creating a directory for that purpose, and store
administered objects there. You can also instantiate administered objects directly in code if
you prefer not to create an object store at all.

■ Use auto-created physical destinations rather than explicitly creating destinations on the
broker. See the appropriate developer’s guide for information.

Supporting a Production Environment
In a production environment, message service management plays a key role in application
performance and in meeting the enterprise requirements for scaling, availability, and security.
In this environment, the administrator has many more tasks to perform. These can be roughly
divided into setup and maintenance operations.

Setup Operations
Typically, you have to perform the following setup operations:

■ Secure administrative access
Whether you use a file-based or LDAP user repository, make sure that the administrator is
in the admin group and has a secure password. If necessary, create a secure connection to the
broker for the administrator.

■ Secure client access
Whether you use a file-based or LDAP user repository, populate the user repository with the
names of users who can access the message service and edit the access control properties file
to give them appropriate authorization. If necessary set up SSL-based connection services.
To prevent unauthenticated connections, be sure to change the “guest” user’s password.

■ Create and configure physical destinations
Set destination attributes so that the number of messages and the amount of memory
allocated for messages can be supported by broker resources.

■ Create and configure administered objects.
If you want to use an LDAP object store, configure and set up the store. Create and configure
connection factory and destination administered objects.

■ If horizontal scaling and/or message service availability is required, create a broker cluster.
For a conventional broker cluster, create a cluster configuration file and designate a master
broker.

Administration Tasks

Open Message Queue 4.5 Technical Overview • July 201180

For an enhanced broker cluster, create a cluster configuration file that specifies property
values for enhanced cluster mechanisms.

Maintenance Operations
To monitor and control broker resources and to tune application performance, you must do the
following after an application has been deployed:

■ Support and manage application clients
■ Monitor and manage destinations, durable subscriptions, and transactions
■ Disable auto-create capability
■ Monitor and manage the dead message queue

■ Monitor and tune the broker
■ Recover failed brokers
■ Monitor, tune, and reconfigure the broker
■ Manage broker memory resources
■ Expand clusters if necessary

■ Manage administered objects
Create additional administered objects as needed and adjust connection factory attributes to
improve performance and throughput.

Administration Tasks

Chapter 3 • The Message Queue Broker 81

82

Broker Clusters

Message Queue supports the use of broker clusters: groups of brokers working together to
provide message delivery services to clients. Clusters enable a Message Queue service to scale
messaging operations by distributing client connections among multiple brokers. Because a
cluster consists of multiple brokers, the cluster helps protect against individual broker failure.
Two cluster models provide different levels of message service availability.

This chapter discusses the architecture and internal functioning of broker clusters. It covers the
following topics:

■ “Cluster Models” on page 83
■ “Cluster Message Delivery” on page 84
■ “Conventional Clusters” on page 87
■ “Enhanced Clusters” on page 90
■ “Cluster Models Compared” on page 93
■ “Cluster Configuration” on page 94

Cluster Models
Message Queue supports two clustering models both of which provide a scalable message
service, but with each providing a different level of message service availability:

■ Conventional broker clusters. A conventional broker cluster provides for service
availability. When a broker or a connection fails, clients connected to the failed broker
reconnect to another broker in the cluster. However, messages and state information stored
in the failed broker cannot be recovered until the failed broker is brought back online. The
broker or connection failure can therefore result in a significant delay and in JMS message
order not being preserved.

■ Enhanced broker clusters. An enhanced broker cluster provides for data availability in
addition to service availability. When a broker or a connection fails, another broker takes
over the pending work of the failed broker. The failover broker has access to the failed
broker's messages and state information. Clients connected to the failed broker reconnect to

4C H A P T E R 4

83

the failover broker. In an enhanced cluster, as compared to a conventional cluster, messages
owned by the failed broker are delivered by the failover broker as soon as it takes over, and
JMS message order semantics are preserved.

Note – Despite the message service availability offered by both conventional and enhanced
broker clusters, they do not provide a guarantee against failure and the possibility that certain
failures, for example in the middle of a transaction, could require that some operations be
repeated. It is the responsibility of the messaging application (both producers and consumers)
to handle and respond appropriately to failure notifications from the messaging service.

Conventional and enhanced broker clusters are built on the same underlying infrastructure and
message delivery mechanisms. They differ in how brokers in the cluster are synchronized with
one another and in how the cluster detects and responds to failures.

The sections that follow first describe the infrastructure and delivery mechanisms common to
both clustering models, after which the unique aspects of each model is explained.

Cluster Message Delivery
A broker cluster facilitates the delivery of messages between client applications that are
connected to different brokers in the cluster.

The following illustration shows salient features of a Message Queue broker cluster. Each of
three brokers is connected to the other brokers in the cluster: the cluster is fully-connected. The
brokers communicate with each other and pass messages by way of a special cluster connection
service, shown in Figure 4–1 by the dashed lines.

Cluster Message Delivery

Open Message Queue 4.5 Technical Overview • July 201184

Each broker typically has a set of messaging clients (producers and/or consumers) that are
directly connected to that broker. For these client applications, the broker to which they are
directly connected is called their home broker. Each client communicates directly only with its
home broker, sending and receiving messages as if that broker were the only broker in the
cluster.

Accordingly, a producer in the cluster produces messages to a destination in its home broker.
The home broker is responsible for routing and delivering the messages to all consumers of the
destination, whether these consumers are local (connected to the home broker) or remote
(connected to other brokers in the cluster). The home broker works in concert with the other
brokers to deliver messages to all consumers, no matter what brokers they are connected to.

Propagation of Information Across a Cluster
To facilitate delivery of messages across the cluster, information about the destinations and
consumers of each broker is propagated to all brokers in the cluster. Each broker therefore
stores the following information:

■ The name, type, and properties of all physical destinations in the cluster
■ The name, location, and destination of interest of each message consumer

Changes in this information are propagated whenever one of the following events occurs:

■ A destination on one of the cluster’s brokers is created or destroyed.

There are minor variations in the propagation of destinations, depending on the kind of
destination:

FIGURE 4–1 Message Queue Broker Cluster

Message Queue Broker Cluster

Broker 1

Broker 2 Broker 3

Clients

Clients

Clients

Cluster Message Delivery

Chapter 4 • Broker Clusters 85

■ Admin-created destinations. When the destination is created, it is propagated across the
cluster. When the destination is deleted on any broker in the cluster, it's deletion is
propagated across the cluster.

■ Auto-created destinations. When a producer is created and the corresponding
destination does not exist, the destination is auto-created on the producer's home
broker, but is not immediately propagated across the cluster. By contrast, when a
consumer is created and the corresponding destination does not exist, the destination is
auto-created on the consumer's home broker and is propagated across the cluster (as
part of the propagation of information about the consumer). An auto-created
destination can be explicitly deleted by an administrator on each broker. Otherwise, the
destination will be automatically deleted on each broker either when it has had no
consumers and has contained no messages for two minutes, or when the broker restarts
and there are no messages in the destination.

■ Temporary destinations. When the destination is programmatically created, it is
propagated across the cluster. If the consumer of the temporary destination is set to
automatically reconnect in the event of failure, then the destination is stored
persistently, and propagated across the cluster as a persistent destination. When the
consumer connection to the temporary destination closes, the destination is deleted, and
it's deletion is propagated across the cluster. If the home broker of the consumer of a
persistent temporary destination fails and is restarted, and if the consumer does not
reconnect within a specific time interval, then it is assumed that the consumer has failed
and the temporary destination is deleted, and it's deletion is propagated across the
cluster.

■ The properties of a destination are changed.
■ A message consumer is registered with its home broker.
■ A message consumer is disconnected from its home broker (whether explicitly or through

failure of the client, the broker, or the network).

The propagation of destination and consumer information across the cluster means that
destinations and consumers are essentially global to the cluster. In the case of destinations,
properties set for a physical destination (see “Configuring Physical Destinations” on page 65)
apply to all instances of that destination in the cluster. Distributing producers across a cluster
thus results in cumulative cluster-wide limits specified by destination properties such as the
maximum number of messages, the maximum number of message bytes, and the maximum
number of producers.

Message Delivery Mechanisms
Despite the global nature of destinations and consumers in a cluster, a home broker has special
responsibilities with respect to both its producers and consumers:

Cluster Message Delivery

Open Message Queue 4.5 Technical Overview • July 201186

■ A producer’s home broker is responsible for persisting and routing messages originating
from that producer, for logging, for managing transactions, and for processing
acknowledgements from consuming clients across the cluster.

■ A consumer’s home broker is responsible for persisting information about consumers, for
delivering remotely produced messages to the consumer, for letting a producer’s home
broker know whether the consumer is still available, and for letting a producer's home
broker know when each message has been successfully consumed.

The cluster connection service transports payload messages, when needed, from destinations
on a home broker to destinations on remote brokers. It also transports control messages, such
as client acknowledgements, from remote brokers back to a home broker. The cluster attempts
to minimize message traffic across the cluster. For example, it only sends a message to a remote
broker if the remote broker is home to a consumer of the message. If a remote broker has two
identical consumers for the same destination (for example two topic subscribers), the message
is sent over the wire only once. (You can further reduce traffic by setting a destination property
specifying that delivery to local consumers has priority over delivery to remote consumers.)

If secure message delivery is required, you can configure a cluster to also provide secure,
encrypted delivery of messages between brokers.

As a result of the cluster delivery mechanisms described above, each broker in a cluster stores
different persistent messages and maintains different state information. If a broker fails, the
mechanisms for recovering its persistent information depends on the cluster model being used,
as described in subsequent sections.

Conventional Clusters
Message Queue supports two types of conventional clusters:

■ Conventional cluster with master broker
■ Conventional cluster of peer brokers

Both of these types provide service availability in the same way, but they differ in the way that
cluster persistent state information is maintained.

The following figures illustrate the two types of conventional broker cluster.

Conventional Clusters

Chapter 4 • Broker Clusters 87

FIGURE 4–2 Conventional Broker Cluster with Master Broker

Conventional Broker Cluster

Data
Store 2

Data
Store 1

Data
Store 3

Broker 1

Master Broker

Broker 2 Broker 3

Clients

Clients

Clients

Configuration
Change
Record

Conventional Clusters

Open Message Queue 4.5 Technical Overview • July 201188

Conventional broker clusters have the following characteristics:

■ Data Synchronization

Each broker has its own respective persistent data store in which destinations, persistent
messages, and other state information is stored. Some of this information (for example,
destinations and durable subscriptions) has been propagated to the broker from other
brokers in the cluster. If a broker fails, it is possible for this information to become out of
sync with the information stored by other brokers in the cluster. To guard against this
possibility in a conventional broker cluster, a configuration change record is maintained to
track changes to the cluster’s propagated persistent entities. In a conventional cluster with
master broker, one broker, designated as the master broker, maintains the configuration
change record. In a conventional cluster of peer brokers, the configuration change record is
maintained in a JDBC data store that is accessible to all the brokers.

When an offline broker comes back online (or when a new broker is added to the cluster), it
consults the configuration change record for information about destinations and durable
subscribers, then exchanges information with other brokers about its currently active
message consumers.

FIGURE 4–3 Conventional Broker Cluster of Peer Brokers

Clients

Clients

Clients

Data
Store 2

Data
Store 3

Data
Store 1

Broker 3Broker 2

Broker 1

Conventional Clusters

Chapter 4 • Broker Clusters 89

In a conventional cluster with master broker, the master broker should always be the first
broker started within the cluster because other brokers cannot complete their initialization
without accessing the configuration change record. Furthermore, if the master broker goes
offline, destination and durable subscriber information cannot be propagated across the
cluster. Under these conditions, you get an exception if you try to create, reconfigure, or
destroy a destination or a durable subscription (auto-created destinations and temporary
destinations are not affected), or attempt a related operation. Similarly, in the absence of a
master broker, any client application attempting to create a durable subscriber or
unsubscribe from a durable subscription gets an error. Nevertheless, client applications can
successfully interact with an existing durable subscriber.

Message production, delivery, and consumption can continue uninterrupted without a
master broker.

■ Failure Detection and Recovery

A conventional broker cluster detects failures when one broker tries to send data to another
broker and an exception is thrown. When a broker in the cluster detects the failure of its
connection to another broker in the cluster, it automatically attempts to reconnect to that
broker periodically. If that broker has failed, messages and state information stored in it
cannot be recovered until it is restarted. It is the responsibility of an administrator to
monitor brokers in the cluster by using Message Queue administration tools (see
“Administration Tools” on page 76) and to ensure failed brokers are brought back online as
soon as possible.

■ Client Reconnect

If a broker or its connection to a client fails, the client automatically attempts to reconnect to
the same or another broker in the cluster. The reconnect is governed by connection
properties that specify the order and frequency by which the client attempts to reconnect to
brokers in the cluster. The broker to which the client successfully reconnects becomes the
client's new home broker.

In this scenario, the new home broker (if different from the failed broker) does not have all
the client-related state information that was previously held by the failed broker; for
example, messages that have been consumed by the client or the state of transactions
involving the client. As a result, the failure of a broker in a conventional cluster can cause a
delay in message delivery (until the failed broker restarts and the client reconnects).

Enhanced Clusters
The following figure illustrates an enhanced broker cluster. An enhanced broker cluster
provides both service availability and data availability.

Enhanced Clusters

Open Message Queue 4.5 Technical Overview • July 201190

An enhanced broker cluster has the following characteristics:
■ Data Synchronization

All brokers in an enhanced cluster share a common persistent data store in which
destinations, persistent messages, and other state information is stored for each broker.
Because all brokers share the same data store, each broker is able to access the state
information stored by other brokers in the cluster. When a broker that has been offline
rejoins the cluster (or when a new broker is added to the cluster) it is able to access the most
current information simply by accessing the shared data store. Similarly, if a broker fails,
another broker is able to access and take over the failed broker's information in the shared
data store.
To achieve data availability, the shared data store must be a highly-available JDBC database.
While it is possible to use a shared data store that is not highly-available, such a data store
would represent a single point of failure for the cluster, and pose a normally unacceptable
risk for a production message service: all brokers in the cluster would be impacted if the
shared data store were to become unavailable.

■ Failure Detection and Recovery
An enhanced cluster makes use of a distributed heartbeat service by which brokers inform
other brokers that they are online and accessible by the cluster connection service. The
heartbeat service also updates broker state information in the cluster's shared data store.
When no heartbeat packet is detected from a broker for a configurable number of heartbeat

FIGURE 4–4 Enhanced Cluster

Enhanced Broker Cluster

Shared
Highly-Available

Data Store

Broker 1

Broker 2 Broker 3

Clients

Clients

Clients

Enhanced Clusters

Chapter 4 • Broker Clusters 91

intervals, the broker is considered suspect of failure. The other brokers in the cluster then
begin to monitor the suspect broker’s state information in the shared data store to confirm
whether the broker is still online. If the suspect broker does not update its state information
within a configurable interval, it is considered to have failed. There is a trade-off between the
speed and the accuracy of failure detection: configuring the cluster for quick failure
detection increases the likelihood that a slow broker will erroneously be considered to have
failed.
When a suspect broker is considered to have failed, a failover broker is selected from among
the remaining online brokers to take over the pending work of the failed broker.
The failover broker attempts to take over the failed broker’s persistent state (pending
messages, destinations, durable subscriptions, pending acknowledgments, and open
transactions) so as to provide uninterrupted service to the failed broker’s clients. If two or
more brokers attempt such a takeover, only the first will succeed (the first acquires a lock on
the failed broker’s data in the shared data store, preventing subsequent takeover attempts).
The takeover of a failed broker's state happens very rapidly. Then, the failover broker
performs takeover operations such as rolling back non-prepared transactions, loading
messages and routing messages. While performing these takeover operations, the failover
broker cannot accept new client connections.
Once takeover is complete and a period for clients to reconnect to the failover broker has
elapsed, the failover broker will clean up any transient resources (such as completed
transactions and temporary destinations) belonging to the failed broker.

■ Client Reconnect
If a broker fails, its clients automatically reconnect to the failover broker, which becomes
their new home broker. The reconnect process is a dynamic interplay between the client
runtime and the broker cluster: if a client attempts to reconnect to a broker that is not the
failover broker, the reconnect is rejected and the client is redirected to the failover broker.
In this scenario, the new home broker (the failover broker) has immediate access to all the
client-related state information that was previously held by the failed broker. The failover
broker can therefore take over where the failed broker left off. As a result, the failure of a
broker in an enhanced cluster will not cause its messages to be unavailable for delivery.
However, during the time required for takeover to complete, the failover broker cannot
accept new client connections.

To configure an enhanced cluster you set cluster configuration properties for each broker in the
cluster. These properties are detailed in “Enhanced Broker Cluster Properties” in Open Message
Queue 4.5 Administration Guide.

Enhanced Clusters

Open Message Queue 4.5 Technical Overview • July 201192

Cluster Models Compared
Conventional and enhanced cluster models share the same basic infrastructure. They both use
the cluster communication service to enable message delivery between producers and
consumers across the cluster. However, as shown in the following figure and described in
previous sections, these models differ in how destination and consumer information is
synchronized across the cluster, in the mechanisms for detecting failure, in how client
reconnect takes place.

In addition, while both models rely on the broker's persistence interfaces (both flat-file and
JDBC), in the case of enhanced clusters the shared data store must be a highly-available JDBC
database (a highly-available file-based data store has not yet been implemented).

The following table summarizes the functional differences between the two cluster models. This
information might help in deciding which model to use or whether to switch from one to
another.

FIGURE 4–5 Cluster Infrastructure

Broker Cluster Infrastructure

File-Based
Data Store

JDBC
Database

Cluster Communication Service

Message Routing and Delivery

Conventional Cluster

Individual Broker
Data Stores

Configuration Change Record

Configured Client Reconnect

File-Based
Persistence

JDBC-based
Persistence

Highly-Available
JDBC Database

Shared Highly-Available
Data Store

File-based
Persistence

JDBC-based
Persistence

Enhanced Cluster

Distributed Heartbeat and
Monitoring Services

Failover Broker and
Automatic Client Reconnect

Cluster Models Compared

Chapter 4 • Broker Clusters 93

TABLE 4–1 Clustering Model Differences

Functionality Conventional Enhanced

Performance Faster than enhanced cluster model. Slower than conventional cluster
model.

Service availability Yes, but some operations are not
possible if master broker is down.

Yes.

Data availability No. State information in failed broker
is not available until broker restarts.

Yes at all times.

Recovery at failover No. Persistent messages and states are
unavailable until the failed broker
restarts. Also, client reconnects might
not be possible if failure occurs during
a transaction commit (rare).

Yes. Persistent messages and states in
failed broker are taken over,
non-prepared transactions are rolled
back, and messages are processed for
delivery. If failure occurs during a
transaction commit, an exception
might be thrown indicating that the
transaction could not be committed
(extremely rare).

Configuration Set appropriate cluster configuration
properties for each broker.

Set appropriate cluster configuration
properties for each broker.

Additional requirements None. Highly-available database.

Restricted to subnet No. Yes.

Cluster Configuration
Depending on the clustering model used, you must specify appropriate broker properties to
enable the Message Queue service to manage the cluster. This information is specified by a set of
cluster configuration properties,. Some of these properties must have the same value for all
brokers in a cluster; others must be specified for each broker individually. It is recommended
that you place all configuration properties that must be the same for all brokers in one central
cluster configuration file that is referenced by each broker at startup time. This ensures that all
brokers share the same common cluster configuration information.

See “Configuring Broker Clusters” in Open Message Queue 4.5 Administration Guidefor
detailed information on cluster configuration properties.

Note – Although the cluster configuration file was originally intended for configuring clusters, it
is also a convenient place to store other (non-cluster-related) properties that are shared by all
brokers in a cluster.

Cluster Configuration

Open Message Queue 4.5 Technical Overview • July 201194

For complete information about administering broker clusters, see Chapter 10, “Configuring
and Managing Broker Clusters,” in Open Message Queue 4.5 Administration Guide. For
information about the effect of reconnection on the client, see “Connection Event Notification”
in Open Message Queue 4.5 Developer’s Guide for Java Clients and “Client Connection Failover
(Auto-Reconnect)” in Open Message Queue 4.5 Developer’s Guide for Java Clients.

Cluster Configuration

Chapter 4 • Broker Clusters 95

96

Message Queue and Java EE

The Java Platform, Enterprise Edition (Java EE) is a specification for a standard server platform
hosting multi-tier, distributed enterprise applications. One of the requirements of Java EE is
that distributed components be able to interact through reliable, asynchronous messaging. This
interaction is enabled through the use of a JMS provider. In fact, Message Queue is the reference
JMS implementation for Java EE.

This chapter explores the ramifications of implementing JMS support in a Java EE platform
environment. The chapter covers the following topics:

■ “JMS/Java EE Programming: Message-Driven Beans” on page 97
■ “Java EE Application Server Support” on page 99

For additional information about using Message Queue as a JMS provider for Java EE
compliant application servers, see Chapter 20, “JMS Resource Adapter Property Reference,” in
Open Message Queue 4.5 Administration Guide.

JMS/Java EE Programming: Message-Driven Beans
In addition to the general JMS client programming model introduced in Chapter 2, “Client
Programming Model,” there is a more specialized adaptation of a JMS client used in the context
of Java EE platform applications. This specialized client is called a message-driven bean and is
one of a family of Enterprise JavaBeans (EJB) components described in the EJB 2.0 (and later)
Specification (http://java.sun.com/products/ejb/docs.html).

Message-driven beans provide asynchronous messaging; other EJB components (session beans
and entity beans) can only be called synchronously, through standard EJB interfaces. However,
enterprise applications often need asynchronous messaging, to allow server-side components
to communicate without tying up server resources. Any application whose server-side
components must respond to application events needs an EJB component that can receive and
consume messages without being tightly coupled to the message producer. In enterprise
applications, this capability must also scale under increasing load.

5C H A P T E R 5

97

http://java.sun.com/products/ejb/docs.html

A message-driven bean (MDB) is an EJB component supported by a specialized EJB container,
that provides distributed services for the components it supports.

An MDB implements the JMS MessageListener interface. The onMessage method (written by
the MDB developer) is invoked when the MDB container receives a message. The onMessage()
method consumes the message, just as the onMessage() method of a standard
MessageListener object would. (You do not remotely invoke methods on MDBs as you do on
other EJB components: therefore there are no home or remote interfaces associated with them.)
Each MDB can consume messages from only a single destination. The messages can be
produced by standalone JMS applications, JMS components, or EJB components, as shown in
the following figure.

A specialized EJB container supports the MDB. This MDB container creates instances of the
MDB and sets them up for asynchronous consumption of messages. The container sets up a
connection with the broker (including authentication), creates a pool of sessions associated
with a given destination, and manages the distribution of messages among the pooled sessions.
Since the container controls the life cycle of MDB instances, it manages the pool of MDB
instances to accommodate incoming message loads.

Associated with each MDB is a deployment descriptor that specifies the connection factory
attributes and destination properties that the container uses in setting up message
consumption. The deployment descriptor can also include other information needed by
deployment tools to configure the container. Each such container supports all instances of a
single MDB.

FIGURE 5–1 Messaging with MDBs

EJB Container

MDB Container

JMS
Component

or
Application

EJB
Instance

Broker

JMS Message
Service

JMS Message
Consumers

JMS Message
Producers

MDB
Instance

onMessage()
Destinations

JMS/Java EE Programming: Message-Driven Beans

Open Message Queue 4.5 Technical Overview • July 201198

Java EE Application Server Support
In Java EE architecture, EJB containers are provided by Java EE application servers. An
application server supports these containers by providing resources they need, such as
transaction managers, persistence managers, name services, and, in the case of messaging and
MDBs, a JMS provider.

For information about Java EE architecture, see the Java EE Platform Specification located at
http://www.oracle.com/technetwork/java/javaee/downloads/index.html.

Java EE also provides a standardized way of plugging in external resources needed by an
application server. The standard, defined by the Java EE Connector Architecture (J2EECA) 1.5
specification, allows an application server to interact with external systems by way of a resource
adapter. External systems can include, among others, JMS messaging systems, as implemented
by a JMS provider.

Plugging a JMS resource adapter into an application server allows Java EE components
deployed and running in the application server to exchange JMS messages. The JMS connection
factory and destination administered objects needed by these components can be created and
configured using Java EE application server administration tools.

Other administrative operations, however, such as managing a broker and physical
destinations, are not included in the J2EECA specification and can be performed only through
provider-specific tools.

Message Queue includes a JMS resource adapter that consists of a single file (imqjmsra.rar)
located in a directory that depends on the operating system (see Chapter 20, “JMS Resource
Adapter Property Reference,” in Open Message Queue 4.5 Administration Guide). The
imqjmsra.rar file contains the JAR files needed by the application server to support JMS
messaging, as well as the resource adapter deployment descriptor (ra.xml) used to deploy the
resource adapter in a Java EE application server.

You can deploy the Message Queue resource adapter in Java EE-1.4-compliant application
servers by following the resource adapter deployment and configuration instructions provided
by each application server.

In the case of the Open Server, however, Message Queue is already integrated, by default, as the
application server's native JMS provider. Hence, no deployment of the Message Queue resource
adapter is required.

Java EE Application Server Support

Chapter 5 • Message Queue and Java EE 99

http://www.oracle.com/technetwork/java/javaee/downloads/index.html

100

Message Queue Implementation of Optional
JMS Functionality

The JMS specification indicates certain items that are optional: each JMS provider (vendor)
chooses whether to implement them. This appendix describes how the Message Queue product
handles JMS optional items.

Table A–1 describes how the Message Queue service handles JMS optional items.

Optional Features
TABLE A–1 Optional JMS Functionality

Section in JMS Specification Description and Message Queue Implementation

3.4.3 JMSMessageID “Since message IDs take some effort to create and increase a message’s
size, some JMS providers may be able to optimize message overhead if
they are given a hint that message ID is not used by an application. JMS
Message Producer provides a hint to disable message ID.”

Message Queue implementation: Product does not disable Message ID
generation (any setDisableMessageID() call in MessageProducer is
ignored). All messages will contain a valid MessageID value.

3.4.12 Overriding Message Header
Fields

“JMS does not define specifically how an administrator overrides these
header field values. A JMS provider is not required to support this
administrative option.”

Message Queue implementation: The Message Queue product
supports administrative override of the values in message header fields
through configuration of the client runtime (see “Message Header” on
page 47).

AA P P E N D I X A

101

TABLE A–1 Optional JMS Functionality (Continued)
Section in JMS Specification Description and Message Queue Implementation

3.5.9 JMS Defined Properties “JMS Reserves the ’JMSX’ Property name prefix for JMS defined
properties.”“Unless noted otherwise, support for these properties is
optional.”

Message Queue implementation: The JMSX properties defined by the
JMS 1.1 specification are supported in the Message Queue product (see
Appendix B, “Stability of Message Queue Interfaces,” in Open Message
Queue 4.5 Administration Guide).

3.5.10 Provider-specific Properties “JMS reserves the ’JMS_<vendor_name >’ property name prefix for
provider-specific properties.”

Message Queue implementation: The purpose of the provider-specific
properties is to provide special features needed to support JMS use with
provider-native clients. They should not be used for JMS to JMS
messaging.

4.4.8 Distributed Transactions “JMS does not require that a provider support distributed transactions.”

Message Queue implementation: Distributed transactions are
supported in this release of the Message Queue product (see
“Transactions” on page 54).

4.4.9 Multiple Sessions “For PTP <point-to-point distribution model>, JMS does not specify the
semantics of concurrent QueueReceivers for the same queue; however,
JMS does not prohibit a provider from supporting this.” See section 5.8
of the JMS specification for more information.

Message Queue implementation: The Message Queue implementation
supports queue delivery to multiple consumers. For more information,
see “Point-To-Point Messaging” on page 37.

Optional Features

Open Message Queue 4.5 Technical Overview • July 2011102

Message Queue Features

The Message Queue service fully implements the JMS 1.1 specification for reliable,
asynchronous message delivery. For information about JMS compliance-related issues, see
Appendix A, “Message Queue Implementation of Optional JMS Functionality.”

Message Queue has additional capabilities and features that exceed JMS requirements. You can
use these features to integrate and monitor systems consisting of large numbers of distributed
components exchanging many thousands of messages in round-the-clock, mission-critical
operations.

This book has introduced these enterprise-strength features in the process of describing the
Message Queue service. For your convenience, this appendix provides an alphabetical summary
of Message Queue features: each feature is briefly described, the work required to use the feature
is summarized, and references are provided to sections in this book that introduce these
features and to the specific documents in the Message Queue documentation set that describe
these features in detail.

BA P P E N D I X B

103

Feature List
TABLE B–1 Message Queue Features

Feature Description and Reference

Administration tools The Message Queue service includes GUI and
command line tools for managing destinations,
transactions, durable subscriptions, administered
object stores, user repositories, JDBC-compliant
data stores, and server certificates.

Also see the JMX-based administration feature
described in this table.

Reference

“Built-in Administration Tools” on page 76

Chapter 1, “Administrative Tasks and Tools,” in
Open Message Queue 4.5 Administration Guide

Feature List

Open Message Queue 4.5 Technical Overview • July 2011104

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Authentication Authenticate users seeking a connection to the
broker.

The Message Queue service allows users to connect
to the broker by validating their name and
password against values stored in a user repository.
The repository can be a flat-file repository shipped
with Message Queue or an LDAP repository (LDAP
v2 or v3 protocol).

To Use
1. Create a user repository or use the default

instance.
2. Use the imqusermgr tool to populate the

repository.

JAAS-Based Authentication

Application clients can also use authentication
services based on the Java Authentication and
Authorization Service (JAAS), which allows you to
plug in a variety of services into the broker to
authenticate Message Queue clients. The JAAS API
is a core API in J2SE and therefore it is an integral
part of Message Queue's runtime environment.

To Use
1. The JAAS provider supplies a login module

class that implements the authentication
service.

2. Obtain JAAS configuration file and specify its
location using a system property.

3. Configure broker properties that relate to JAAS
support.

Reference

“Authentication and Authorization” on page 69

Chapter 9, “Configuring and Managing Security
Services,” in Open Message Queue 4.5
Administration Guide

Feature List

Appendix B • Message Queue Features 105

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Authorization Authorize users to perform specific operations.

The Message Queue service allows you to create an
access control properties file that specifies the
operations users and groups of users can perform.
The broker checks this file when a client seeks to
create a connection, create a producer, create a
consumer, or browse a queue.

To Use

Edit the access control properties file that is
automatically created for the broker instance.

Reference

“Authentication and Authorization” on page 69

Chapter 9, “Configuring and Managing Security
Services,” in Open Message Queue 4.5
Administration Guide

Automatic reconnect The administrator sets connection attributes on the
connection factory administered object to enable
automatic reconnection in the event of connection
or broker failure. Reconnection can be to the same
broker or to another broker in a cluster if a cluster is
used. You can specify how many times to try
reconnection and the interval between attempts.
You can also specify how often to iterate through a
list of brokers and whether to iterate through the
list in a specific order.

Reference

“Connection Services” on page 62

Chapter 11, “Managing Administered Objects,” in
Open Message Queue 4.5 Administration Guide

Feature List

Open Message Queue 4.5 Technical Overview • July 2011106

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Broker clusters The administrator can balance client connections
and message delivery across a number of broker
instances by grouping those instances into a broker
cluster. The Message Queue service supports two
kinds of clusters: conventional clusters and high
availability clusters

To Use Conventional Clusters
1. Specify cluster configuration properties for

each broker in the cluster. Specify properties
that are the same for all brokers using a cluster
configuration file.

2. If there is a master broker, start the master
broker

3. Start the other brokers in the cluster.

To Use Enhanced Clusters
1. Specify cluster configuration properties for

each broker in the cluster (including
JDBC-related properties). Specify properties
that are the same for all brokers using a cluster
configuration file.

2. Install your JDBC driver's .jar file in the
appropriate directory location.

3. Use the imqdbmgr tool to create the database
schema for the highly available data store.

4. Start the brokers in the cluster.

Reference

Chapter 4, “Broker Clusters”

Chapter 10, “Configuring and Managing Broker
Clusters,” in Open Message Queue 4.5
Administration Guide

Feature List

Appendix B • Message Queue Features 107

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Broker configuration The administrator can set broker properties to tune
Message Queue service performance. This includes
routing services, persistence services, security,
monitoring, and administered object management.

Reference

Chapter 3, “The Message Queue Broker”

Chapter 4, “Configuring a Broker,” in Open Message
Queue 4.5 Administration Guide

C client support, including support for distributed
transactions.

C clients can use Message Queue messaging
services to send and receive messages. The C API
enables legacy C applications and C++ applications
to participate in JMS-based messaging.

Message Queue’s C API is supported by a C client
runtime that supports most of the standard JMS
functionality, with the exception of the following:
the use of administered objects; map, stream, or
object message body types; distributed
transactions; and queue browsers. The C client
runtime also does not support most of Message
Queue’s enterprise features.The Message Queue
C-API supports the XA interface (between a
distributed transaction manager and Message
Queue as a XA-compliant resource manager),
allowing Message Queue C-API clients running in a
distributed transaction processing environment
(such as BEA Tuxedo) to participate in distributed
transactions.

Reference

“Java and C Clients” on page 59

Open Message Queue 4.5 Developer’s Guide for C
Clients

Feature List

Open Message Queue 4.5 Technical Overview • July 2011108

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Client runtime logging Java clients can use all the J2SE 1.4 logging facilities
to configure how the Message Queue client runtime
outputs its logging information. Clients can choose
to log the following events: changes in connection
state and miscellaneous connection activities,
session-related events, the creation of producers,
consumers, and destinations, and the consumption
and production of messages.

Java clients can configure logging
programmatically or by using configuration files.

Reference

“Client Runtime Logging” in Open Message
Queue 4.5 Developer’s Guide for Java Clients

Compressed messages Java clients can set a message property to have the
client runtime compress a message being sent. The
runtime on the consumer side decompresses the
message before it delivers it to the consumer.
Additional properties are provided that you can use
to determine whether compressing messages would
actually improve performance.

Reference

“Message Body” on page 49

“Managing Message Size” in Open Message
Queue 4.5 Developer’s Guide for Java Clients

Configurable persistence The administrator can configure the broker to use
the file-based persistent store provided with
Message Queue or a JDBC-compliant database,
such as Oracle 8i.

To Use

Set broker properties that relate to file-system
persistent storage or JDBC-compliant storage.

Reference

“Persistence Services” on page 67

Chapter 8, “Configuring Persistence Services,” in
Open Message Queue 4.5 Administration Guide

Feature List

Appendix B • Message Queue Features 109

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Configurable physical destinations The administrator can define some messaging
behavior by setting physical destination properties
when creating destinations. The following behavior
can be configured for any destination: the
maximum number of unconsumed messages or the
maximum amount of memory allowed for such
messages, which messages the broker should reject
when memory limits are reached, the maximum
number of producers and consumers, the
maximum message size, the maximum number of
messages delivered in a single batch, whether the
destination can deliver only to local consumers,
and whether dead messages on the destination can
be moved to the dead message queue.

Reference

“Message Delivery Services” on page 64

“Configuring and Managing Physical Destinations”
in Open Message Queue 4.5 Administration Guide

Connection event notification Java clients can listen for connection events (like
closure or reconnection) and take appropriate
action based on the notification type and the
connection state.

To Use
1. Use the event notification API to create an

event listener.

2. Add code to the client application that will take
appropriate action depending on the events
captured by the event listener.

Reference

“Connection Event Notification” in Open Message
Queue 4.5 Developer’s Guide for Java Clients

Feature List

Open Message Queue 4.5 Technical Overview • July 2011110

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Connection ping The administrator can set a connection factory
attribute to specify the frequency of a ping
operation from the client runtime to the broker.
This allows the client to preemptively detect a failed
connection.

Reference

“Connection Services” on page 62

“Configuring Connection Services” in Open
Message Queue 4.5 Administration Guide

Dead message queue The Message Queue message service creates the
dead message queue to hold messages that have
expired or that the broker could not process. You
can examine the contents of the queue to monitor,
tune, or troubleshoot system performance.

Reference

“Physical Destinations” on page 64

“Using the Dead Message Queue” in Open Message
Queue 4.5 Administration Guide“Configuring and
Managing Physical Destinations” in Open Message
Queue 4.5 Administration Guide

Feature List

Appendix B • Message Queue Features 111

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

HTTP connections Java clients can create HTTP connections to the
broker.

HTTP transport allows messages to be delivered
through firewalls. Message Queue implements
HTTP support using an HTTP tunnel servlet that
runs in a web server environment. Messages
produced by a client are wrapped by the client
runtime as HTTP requests and delivered over
HTTP through a firewall to the tunnel servlet. The
tunnel servlet extracts the JMS message from the
HTTP request and delivers the message over
TCP/IP to the broker.

To Use
1. Deploy HTTP tunnel servlet on a web server.
2. Configure broker’s httpjms connection service

and start the broker.
3. Configure HTTP connection.
4. Obtain an HTTP connection to the broker.

(Java clients only.)

Reference

“Connection Services” on page 62

Appendix C, “HTTP/HTTPS Support,” in Open
Message Queue 4.5 Administration Guide

Interactive monitoring The administrator can use the imqcmd metrics
command to monitor a broker remotely.
Monitored data includes JVM metrics, broker
message flow, connections, connection resources,
messages, destination message flow, destination
consumers, destination resource use.

Reference

“Monitoring Services” on page 73

Chapter 13, “Monitoring Broker Operations,” in
Open Message Queue 4.5 Administration Guide

Feature List

Open Message Queue 4.5 Technical Overview • July 2011112

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Java EE resource adapters Message Queue provides a resource adapter that
can be plugged into a Java EE-compliant
application server. By using Message Queue as a
JMS provider, an application server meets the Java
EE requirement that distributed components
running in the application server be able to interact
using reliable, asynchronous message.

To Use

Configure the adapter by setting adapter attributes.

Reference

“Java EE Application Server Support” on page 99

Chapter 20, “JMS Resource Adapter Property
Reference,” in Open Message Queue 4.5
Administration Guide

Java ES Monitoring Framework support The Java ES Monitoring Framework allows
administrators to use the same interface to manage
any and all Java ES components. If you are using
Message Queue with other Java ES components, it
might be more convenient to manage these from a
single console. Administrators can use the Sun Java
System Monitoring Console to view performance
statistics, create rules to monitor automatically, and
acknowledge alarms. To enable Java ES
monitoring, you must do the following:
■ Install and configure the components in your

deployment; for example, Message Queue and
the application server.

■ Enable and configure the Monitoring
Framework for all your monitored
components.

■ Install the Monitoring Console on a separate
host, start the master agent, and then start the
web server.

For information, see the Sun Java Enterprise System
Monitoring Guide.

Feature List

Appendix B • Message Queue Features 113

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

JMS Bridge Service The JMS bridge service enables a Message Queue
broker to map its destinations to destinations in
external JMS providers, effectively allowing the
Message Queue broker to communicate with
clients of the external JMS provider. The JMS
bridge service supports any number of uniquely
named JMS bridges in a broker. Each bridge
consists of two primary components:
■ One or more links that each map a destination

in the Message Queue broker to a destination
in an external JMS provider or in another
Message Queue broker. To provide destination
mapping, each link consists of a source that
specifies the destination from which the JMS
bridge receives messages and a target that
specifies the destination to which the JMS
bridge forwards messages received from the
source.

■ A built-in Dead Message Queue where
undeliverable messages are sent. Additional,
special-purpose DMQs can also be specified.

Reference

“Configuring and Managing JMS Bridge Services”
in Open Message Queue 4.5 Administration Guide

JMX-Based Administration Java clients can use the JMX API to monitor and
manage broker resources: the broker, services,
connections, destinations, consumers, producers,
and so on. You can use JMX-based administration
in different ways to monitor application
performance, to configure and monitor broker
services, to automate tasks, or to write custom
tools.

Reference

“JMX-Based Administration” on page 78

Appendix D, “JMX Support,” in Open Message
Queue 4.5 Administration Guide

Open Message Queue 4.5 Developer’s Guide for JMX
Clients

Feature List

Open Message Queue 4.5 Technical Overview • July 2011114

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

JNDI service provider support Clients can look up administered objects using the
JNDI API.

Administrators can use the imqobjmgr utility to
add, list, update, and delete administered objects in
an object store accessible using JNDI.

Reference

“Built-in Administration Tools” on page 76

Chapter 11, “Managing Administered Objects,” in
Open Message Queue 4.5 Administration Guide

LDAP Server support An administrator can use an LDAP server as a
Message Queue administered object store and as a
user repository (needed for authentication). By
default Message Queue provides file-based storage
for this data.

To Use as an Administered Object Store
1. Use the tools provided by the LDAP vendor to

set up the LDAP server.

2. Set the LDAP-related broker properties to
define the initial context and the location of the
object store.

3. Set the LDAP-related broker properties that
relate to securing the LDAP server operations.

Reference

Chapter 9, “Configuring and Managing Security
Services,” in Open Message Queue 4.5
Administration Guide

Feature List

Appendix B • Message Queue Features 115

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Memory resource management The administrator can configure the following
behavior:
1. Set properties on a destination to specify the

maximum number of producers, the maximum
number of messages, and the maximum size of
any one message.

2. Set properties on a destination to control
message flow.

3. Set properties on a destination to manage
message flow for each destination.

4. Set properties on the broker to specify message
limits on all destinations for that broker.

5. Set properties on the broker to specify
thresholds of available system memory at
which the broker takes action to prevent
memory overload. The action taken depends
on the state of memory resources.

Reference

“Message Delivery Services” on page 64

Chapter 4, “Configuring a Broker,” in Open Message
Queue 4.5 Administration Guide

Message compression The developer can set a message header property to
have the client runtime compress a message before
sending it. The client runtime on the consumer side
decompresses the message before delivering it to
the consumer.

Reference

“Message Properties” on page 48

“Message Compression” in Open Message
Queue 4.5 Developer’s Guide for Java Clients

Feature List

Open Message Queue 4.5 Technical Overview • July 2011116

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Message flow control to clients The administrator or the developer can configure a
connection to specify various flow limits and
metering schemes to minimize the collision of
payload and control messages, and thereby to
maximize message throughput.

To Use

Set the flow-control attributes for the connection
factory administered object (administrator), or set
the flow-control properties for the connection
factory (developer).

Reference

“Connection Factories and Connections” on
page 45

“Configuring Connection Services” in Open
Message Queue 4.5 Administration Guide

“Connection Factory Attributes” in Open Message
Queue 4.5 Administration Guide

Message-based monitoring API Java clients can use a monitoring API to create
custom monitoring applications. A monitoring
application is a consumer that retrieves metrics
messages from special metrics topic destinations.

To Use
1. Write a metrics monitoring client.
2. Set broker properties to configure the broker’s

metrics message producer.
3. Set access controls on metrics topic

destinations.
4. Start the monitoring client.

Reference

“Monitoring Services” on page 73

Chapter 4, “Using the Metrics Monitoring API,” in
Open Message Queue 4.5 Developer’s Guide for Java
Clients

Chapter 13, “Monitoring Broker Operations,” in
Open Message Queue 4.5 Administration Guide

Feature List

Appendix B • Message Queue Features 117

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Multiple destinations for publishers and subscribers Publishers can publish messages to multiple topic
destinations and subscribers can consume
messages from multiple topic destinations by using
a destination name that includes wildcard
characters, representing multiple destinations.
Using such symbolic names allows administrators
to create additional topic destinations, as needed,
consistent with the wildcard naming scheme.
Publishers and subscribers automatically publish to
and consume from the added destinations.
(Wildcard destination consumers are more
common than publishers.)

Reference

“Supported Topic Destination Names” in Open
Message Queue 4.5 Administration Guide

Queue delivery to multiple consumers Clients can register more than one consumer for a
given queue.

The administrator can specify the maximum
number of active consumers and the maximum
number of backup consumers for the queue. The
broker distributes messages to the registered
consumers, balancing the load among them in
order to allow the system to scale.

To Use

Set physical destination properties
maxNumActiveConsumers and
maxNumBackupConsumers.

Reference

“Point-To-Point Messaging” on page 37

Chapter 18, “Physical Destination Property
Reference,” in Open Message Queue 4.5
Administration Guide

Feature List

Open Message Queue 4.5 Technical Overview • July 2011118

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Reliable data persistence To obtain absolute reliability you can require that
the operating system write the data synchronously
to the persistent store by setting the
imq.persist.file.sync.enabled property to
true. This eliminates possible data loss due to
system crashes, but at the expense of performance.
Note that although the data is not lost, it is not
available to any other broker (in a cluster) because
data is not currently shared by clustered brokers.
When the system comes back up, the broker can
reliably resume operations.

Reference

“Persistence Services” on page 67

“Persistence Properties” in Open Message Queue 4.5
Administration Guide

Schema validation of XML messages Enables validation of the content of a text (not
object) XML message against an XML schema at
the point the message is sent to the broker. The
location of the XML schema (XSD) is specified as a
property of a Message Queue destination. If no
XSD location is specified, the DTD declaration
within the XML document is used to perform DTD
validation. (XSD validation, which includes data
type and value range validation, is more rigorous
than DTD validation.)

Reference

“Physical Destination Properties” in Open Message
Queue 4.5 Administration Guide

Feature List

Appendix B • Message Queue Features 119

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Secure connections Clients can secure transmission of messages using
the Secure Socket Layer (SSL) standard over
TCP/IP and HTTP transports. These SSL-based
connection services allow for the encryption of
messages sent between clients and broker.

SSL support is based on self-signed server
certificates. Message Queue provides a utility that
generates a private/public key pair and embeds the
public key in a self-signed certificate. This
certificate is passed to any client requesting a
connection to the broker, and the client uses the
certificate to set up an encrypted connection.

To Use
1. Generate a self-signed or signed certificate.
2. Enable the secure service.
3. Start the broker.
4. Configure client security connection properties

and run the client.

Reference

“Security Services” on page 68

Chapter 9, “Configuring and Managing Security
Services,” in Open Message Queue 4.5
Administration Guide

“Working With Secure Connections” in Open
Message Queue 4.5 Developer’s Guide for C Clients

Feature List

Open Message Queue 4.5 Technical Overview • July 2011120

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Simple Object Access Protocol (SOAP) support Clients can receive SOAP (XML) messages and they
can wrap them as JMS messages and use Message
Queue to exchange them as they would a JMS
message.

Clients can use a special servlet to receive SOAP
messages; they can use a utility class to wrap a
SOAP message as a JMS message; they can use
another utility class to extract the SOAP message
from the JMS message. Clients can use standard
SOAP with Attachments API for Java (SAAJ)
libraries to assemble and disassemble a SOAP
message.

Reference

“Working with SOAP Messages” on page 59

Chapter 5, “Working with SOAP Messages,” in
Open Message Queue 4.5 Developer’s Guide for Java
Clients

STOMP Bridge Service The STOMP bridge service enables a Message
Queue broker to communicate with clients that use
the Streaming Text Oriented Messaging Protocol
defined by the http://stomp.codehaus.org open
source project.

The STOMP bridge service provides the features
need to fully integrate STOMP messaging into the
JMS messaging environment of Message Queue:
■ Registration with the Message Queue Port

Mapper service so that STOMP clients can
discover the service dynamically

■ Support for TCP and SSL/TLS connections,
including those requiring client authentication

■ Automatic conversion of STOMP frame
messages to and from JMS BytesMessage and
TextMessage types

■ Support for the full STOMP protocol,
including the STOMP JMS bindings

Reference

“Configuring and Managing STOMP Bridge
Services” in Open Message Queue 4.5
Administration Guide

Feature List

Appendix B • Message Queue Features 121

http://stomp.codehaus.org

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Thread management The administrator can specify the maximum and
minimum number of threads assigned to any
specific connection service. The administrator can
also determine whether a connection service could
increase throughput by using a shared thread
model, which allows threads dedicated to idle
connections to be used by other connections.

To Use

Set connection service thread-related properties.

Reference

“Thread Pool Management” on page 64

Chapter 4, “Configuring a Broker,” in Open Message
Queue 4.5 Administration Guide

Tunable performance The administrator can set broker properties to
adjust memory usage, threading resources, message
flow, connection services, reliability parameters,
and other elements that affect message throughput
and system performance.

Reference

“Monitoring Services” on page 73

“Monitoring Services” in Open Message Queue 4.5
Administration Guide

Chapter 14, “Analyzing and Tuning a Message
Service,” in Open Message Queue 4.5
Administration Guide

Feature List

Open Message Queue 4.5 Technical Overview • July 2011122

TABLE B–1 Message Queue Features (Continued)
Feature Description and Reference

Universal Message Service (UMS) Message Queue includes a universal messaging
service (UMS) and messaging API that provides
access to Message Queue from any http-enabled
device. As a result, almost any application can
communicate with any other application and
benefit from the reliability and guaranteed delivery
of JMS messaging. In addition, the UMS provides
enhanced scalability for JMS messaging, allowing
the number of messaging clients to reach
internet-scale proportions.

The simple, language-independent, protocol-based
UMS API supports both web-based and
non-web-based applications, and can be used with
both scripting and programming languages. The
API is offered in two styles: a simple messaging API
that uses a Representational State Transfer
(REST)-style protocol, and an XML messaging API
that embeds the protocol in a SOAP message
header. In both cases, however, the API requires
only a single http request to send or receive a
message.

Reference

“Universal Message Service (UMS)” in Open
Message Queue 4.5 Release Notes

Documentation of UMS on Open MQ web site:
https://mq.dev.java.net/

4.3-content/ums/umsIntro.html

Feature List

Appendix B • Message Queue Features 123

https://mq.dev.java.net/4.3-content/ums/umsIntro.html
https://mq.dev.java.net/4.3-content/ums/umsIntro.html

124

Glossary

This glossary provides information about terms and concepts you might encounter while using
Message Queue.

acknowledgement Control messages exchanged between clients and broker to ensure reliable delivery. There are two general
types of acknowledgement: client acknowledgements and broker acknowledgements.

administered
objects

A pre-configured object—a connection factory or a destination—that encapsulates provider-specific
implementation details, and is created by an administrator for use by one or more JMS clients. The use of
administered objects allows JMS clients to be provider-independent. Administered objects are placed in a
JNDI name space by and are accessed by JMS clients using JNDI lookups.

asynchronous
messaging

An exchange of messages in which the sending of a message does not depend upon the readiness of the
consumer to receive it. In other words, the sender of a message need not wait for the sending method to
return before it continues with other work. If a message consumer is busy or offline, the message is sent
and subsequently received when the consumer is ready.

authentication The process by which only verified users are allowed to set up a connection to a broker.

authorization The process by which a message service determines whether a user can access message service resources,
such as connection services or destinations, to perform specific operations supported by the message
service.

broker The Message Queue entity that manages message routing, delivery, persistence, security, and logging, and
that provides an interface for monitoring and tuning performance and resource use.

client An application (or software component) that interacts with other clients using a message service to
exchange messages. The client can be a producing client, a consuming client, or both.

client identifier An identifier that associates a connection and its objects with a state maintained by the Message Queue
broker on behalf of the client.

client runtime Message Queue software that provides messaging clients with an interface to the Message Queue message
service. The client runtime supports all operations needed for clients to send messages to destinations and
to receive messages from destinations.

cluster Two or more interconnected brokers that work in concert to provide scalable messaging services. In the
event of failover and reconnection, conventional clusters provide service availability; enhanced clusters
provide service and data availability.

125

cluster connection
service

A private protocol that enables brokers in a cluster to provide reliable, synchronized service.

connection A communication channel between a client and a broker used to pass both payload messages and control
messages.

connection factory The administered object the client uses to create a connection to a broker. This can be a
ConnectionFactory object, a QueueConnectionFactory object or a TopicConnectionFactory object.

consumer An object (MessageConsumer) created by a session that is used for receiving messages sent from a
destination. In the point-to-point delivery model, the consumer is a receiver or browser (QueueReceiver
or QueueBrowser); in the publish/subscribe delivery model, the consumer is a subscriber
(TopicSubscriber).

data store A database where information (durable subscriptions, data about destinations, persistent messages,
auditing data) needed by the broker is permanently stored.

dead message A message that is removed from the system for a reason other than normal processing or explicit
administrator action. A message might be considered dead because it has expired, because it has been
removed from a destination due to memory limit overruns, or because of failed delivery attempts. You can
choose to store dead messages on the dead message queue.

dead message
queue

A specialized destination created automatically at broker startup that is used to store dead messages for
diagnostic purposes.

delivery mode An indicator of the reliability of messaging: whether messages are guaranteed to be delivered and
successfully consumed once and only once (persistent delivery mode) or guaranteed to be delivered at
most once (non-persistent delivery mode).

delivery model The model by which messages are delivered: either point-to-point or publish/subscribe. In JMS there are
separate programming domains for each, using specific client runtime objects and specific destination
types (queue or topic), as well as a unified programming domain.

destination The physical destination in a Message Queue broker to which produced messages are delivered for routing
and subsequent delivery to consumers. This physical destination is identified and encapsulated by an
administered object that a client uses to specify the destination for which it is producing messages and/or
from which it is consuming messages.

domain A set of objects used by JMS clients to program JMS messaging operations. There are two programming
domains: one for the point-to-point delivery model and one for the publish/subscribe delivery model.

encryption A mechanism for protecting messages from being tampered with during delivery over a connection.

group The group to which the user of a Message Queue client belongs for purposes of authorizing access to
connections, destinations, and specific operations.

JMS provider A product that implements the JMS interfaces for a messaging system and adds the administrative and
control functions needed to configure and manage that system.

cluster connection service

Open Message Queue 4.5 Technical Overview • July 2011126

message service A middleware service that provides asynchronous, reliable exchange of messages between distributed
components or applications. It includes a broker, the client runtime, the several data stores needed by the
broker to carry out its functions, and the administrative tools needed to configure and monitor the broker
and to tune performance.

messages Asynchronous requests, reports, or events that are consumed by messaging clients. A message has a
header (to which additional fields can be added) and a body. The message header specifies standard fields
and optional properties. The message body contains the data that is being transmitted.

messaging A system of asynchronous requests, reports, or events used by enterprise applications that allows loosely
coupled applications to transfer information reliably and securely.

producer An object (MessageProducer) created by a session that is used for sending messages to a destination. In
the point-to-point delivery model, a producer is a sender (QueueSender); in the publish/subscribe delivery
model, a producer is a publisher (TopicPublisher).

queue An object created by an administrator to implement the point-to-point delivery model. A queue is always
available to hold messages even when the client that consumes its messages is inactive. A queue is used as
an intermediary holding place between producers and consumers.

selector A message header property used to sort and route messages. A message service performs message filtering
and routing based on criteria placed in message selectors.

session A single threaded context for sending and receiving messages. This can be a queue session or a topic
session.

topic An object created by an administrator to implement the publish/subscribe delivery model. A topic may be
viewed as node in a content hierarchy that is responsible for gathering and distributing messages
addressed to it. By using a topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction An atomic unit of work that must either be completed or entirely rolled back.

transaction

127

128

Index

A
access control, 70
access control file, 68
admin-created destinations, 64
administered objects

introduced, 26
managing, 77

administration tools, 32
application servers, and Message Queue, 99
authentication

about, 69–70
components needed for, 68
JAAS-based, 70
use and reference, 105

authorization
See also access control file
about, 69–70
components needed for, 68
use and reference, 106

AUTO_ACKNOWLEDGE mode, 54
auto-created destinations, 65

B
broker acknowledgements

message consumption, and, 54
suppression of, 46

broker clusters
cluster configuration file, 94
cluster configuration properties, 94
connection service for, 84

broker clusters (Continued)
conventional

See conventional broker clusters
enhanced

See enhanced broker clusters
message delivery in, 84
models compared, 93
models of, 83
propagation of information in, 85
synchronization of, 85
use and reference, 107

brokers
administration of, 79
automatic reconnection to, 45, 106
connecting to, 62
firewalls, connecting through, 63
GUI-based administration of, 78
in development environment, 79
interconnected

See broker clusters
introduced, 25, 30
JMX, and, 78
limit behaviors, 66
logging

See logger
maintenance, 81
memory management, 66, 67
metrics

See broker metrics
monitoring, 112
monitoring APIs, 117
performance of, tuning, 122

129

brokers (Continued)
production environment, 80
programmatic management of, 78
properties, 62
recovery from failure, 67
restarting, 67
starting, 77
tools for administering, 76
windows service, as, 78

built-in persistence, 67
BytesMessage type, 49

C
C clients, 31, 59, 108
CLIENT_ACKNOWLEDGE mode, 54
client acknowledgements, 53
client authentication, 45
clients

C and C++, 31, 59, 108
Java, 31, 59
runtime support for, 30

cluster configuration
file, 94
properties, 94

cluster connection service, 84
clustering services, 62
clusters, See broker clusters
components

EJB, 97
MDB, 98

configuration change record, 89
connection factory administered objects

as JMS programming object, 45
defined, 26

connection objects, 45
connection services, 62

about, 61
automatic reconnection, 106
cluster, 84
HTTP support, 112
managing, 77
message flow, 117
pinging service, 111

connection services (Continued)
port mapper

See port mapper
secure, 120
thread management, 122

consumers
as JMS clients, 25
as JMS programming object, 50
asynchronous, 50
delivery to, 50
durable, 45
load balancing consumption, 40
multiple for a queue, 118
synchronous, 50

containers
EJB, 98
MDB, 98

control messages, 56
conventional broker clusters

client reconnect, 90
configuration change record, 89
data synchronization, 89
defined, 83
failure detections, 90
master broker, 89

D
data store, 55

about, 67
flat-file, 67
JDBC-accessible, 68

dead message queue
definition, 65
feature description, 111

delivery, reliable, See reliable delivery
delivery mode, 47
design and performance, 58
destination administered objects

defined, 26
in client applications, 28

destination objects
and message consumption, 50
and message production, 49

Index

Open Message Queue 4.5 Technical Overview • July 2011130

destination objects (Continued)
and programming domains, 42
created by session object, 46
temporary, 46

destinations
objects

See destination objects
physical

See physical destinations
queues, 25
temporary, 51
topics, 26

distributed transactions
about, 55
feature description, 102

domains, See messaging domains
DUPS_OK_ACKNOWLEDGE mode, 54
durable subscriptions, 56

E
EJB containers, 98
encryption, 71
enhanced broker clusters

client reconnect, 92
data synchronization, 91
defined, 84
failure detection, 92

F
firewalls, 63

H
HTTP connections, 112

I
imqbrokerd utility, 77
imqcmd utility, 77

imqdbmgr utility, 78
imqkeytool utility, 78
imqobjmgr utility, 77
imqsvcadmin utility, 78
imqusermgr utility, 69, 78

J
JAAS-based authentication, 70
Java clients, 31, 59
Java EE applications

EJB specification, 97
JMS, and, 24, 97
message-driven beans

See message-driven beans
Message Queue and, 34

Java EE resource adapters, 113
Java ES Monitoring Framework, 75, 113
JDBC support

about, 68
managing, 78

JMS
domains and APIs, 42
message properties, standard, 48
messaging domains, 25
messaging objects, 25
optional features in Message Queue, 101
provider, 24, 28
reserved properties, 102
runtime support for, 30
specification, 24

JMS applications, 43
JMS clients, 60
JMSCorrelationID message header field, 47
JMSDeliveryMode message header field, 47, 48
JMSDestination message header field, 47
JMSExpiration message header field, 47, 48
JMSMessageID, 101
JMSMessageID message header field, 47
JMSPriority message header field, 47, 48
JMSRedelivered message header field, 47
JMSReplyTo message header field, 47
JMSReplyTo message header field, 49
JMSTimestamp message header field, 47

Index

131

JMSType message header field, 47
JMX-based administration, 78
JNDI, 26
JNDI support, 115

L
LDAP repository, 69
LDAP server support, 115
listeners

as JMS programming object, 51
MDBs, and, 98
serializing, 46

logger
about, 74–75
output channels, 74

logging, See logger

M
managed beans, See MBeans
MapMessage type, 49
master broker, 89
MBean server, defined, 78
MBeans

defined, 78
server

See MBean server
MDB, See message-driven beans
memory management, 66, 116
message consumers, See consumers
message-driven beans

about, 98
application server support, 99
deployment descriptor, 98
MDB container, 98

message header fields
JMS message, 47–48
overriding, 46, 101

message listeners, See listeners
message-oriented middleware, 20, 21
message producers, See producers

Message Queue
application servers, and, 99
development environment, 79
features summary, 103
in production environment, 80
JMS optional features, 101

message service
administration, 32
broker services, 61
introduced, 29
memory management, 116
scaling, 33

Message type, 49
messages

body of, 49
body types, 49
broadcasting, 42
compressing, 109, 116
compression of, 49
consumption of, 50
control, 56
correspondence, establishing, 47
delivery mode, 47
destination of, 47
expiration of, 47
headers

See message header fields
ID of, 47
JMS, 47
JMS properties of, 48
JMSReplyTo header field, 52
listeners for, 51
load balancing consumption of, 40
payload, 56
persistent, 48
priority of, 47
processing of, 57
producing and consuming, 45
properties, 48
publishing, 40
redelivery flag, 47
reliable delivery of, 53
reply-to destination, 47
selecting, 47, 51

Index

Open Message Queue 4.5 Technical Overview • July 2011132

messages (Continued)
SOAP, 59
storage of, 55
timestamp for, 47

messaging domains
APIs and, 42
introduced, 37
point-to-point, 38
publish/subscribe, 40

messaging donains, introduced, 25
messaging provider, 22
metrics

data
See broker metrics

message producer, 75
messages, 75
reports, 74

middleware, 20, 21
monitoring

APIs, 117
services, 62
support for Java ES, 113

monitoring, support for Java ES, 75

O
object request broker, 21
ObjectMessage type, 49

P
payload messages, 56
performance, 122
performance and design, 58
permissions

access control properties file, 70
Message Queue operations, 70

persistence
built-in, 67
configurable, 109
data, of, 119
plugged-in

See plugged-in persistence

persistence services, 61
persistent data store, 55
physical destination, in MOM-based systems, 22
physical destinations

admin-created, 64
and destination administered objects, 26
auto-created, 65
configuring, 65
dead message queue, 65
limits for, 66
managing, 65, 77
scope of properties in broker clusters, 86
temporary, 65

plugged-in persistence, 68
point-to-point messaging, 38
port mapper, 63
ports, dynamic allocation of, 63
producers

as JMS clients, 25
as JMS programming object, 49
creating, 49

publish/subscribe messaging, 40
publishing, 40

Q
queue browser, 40, 46
queue destinations, 25

R
reliable delivery

data persistence, 119
JMS specification, 53–56

request-reply pattern, 51
resource adapters, 35, 113
RMI connectors, defined, 78
routing services, 61

S
Secure Socket Layer standard, See SSL

Index

133

security, 68, 120
security services, 62
selectors, 51
self-signed certificates, 78
server, MBean, See MBean server
sessions

as JMS programming object, 46
JMS client acknowledgements, 53
threading and, 46
transacted, 53

SOAP message support
feature description, 121
implementing, 59
introduced, 31

SSL
about, 71
feature description, 120
self-signed certificates, 78

StreamMessage type, 49
subscribers

durable, 42, 51, 56
introduced, 40

T
temporary destinations, 51, 65
TextMessage type, 49
thread management, 122
threading model, 64
timestamps, 47
TLS protocol, 70
topic destinations, 26
transactions

distributed
See distributed transactions

processing of, 54

U
unified APIs, 42
user data, 69
users, managing, 78

Index

Open Message Queue 4.5 Technical Overview • July 2011134

	Open Message Queue 4.5 Technical Overview
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Documentation Conventions
	Typographic Conventions
	Symbol Conventions
	Shell Prompt Conventions
	Directory Variable Conventions

	Related Documentation
	Message Queue Documentation Set
	Java Message Service (JMS) Specification
	JavaDoc
	Example Client Applications
	Example Java Client Applications
	Example C Client Programs
	Example JMX Client Programs

	Online Help

	Documentation, Support, and Training
	Third-Party Web Site References

	Messaging Systems: An Introduction
	Message-Oriented Middleware (MOM)
	JMS as a MOM Standard
	JMS Messaging Objects and Domains
	Administered Objects

	Message Queue: Elements and Features
	The Message Queue Service
	The Broker
	Client Runtime Support
	Java and C Client Support
	Support for SOAP Messages

	Universal Message Service (UMS)
	Administration
	Broker Clusters: Scalability and Availability
	Message Service Scalability
	Message Service Availability

	Message Queue as an Enabling Technology
	Message Queue Feature Summary

	Client Programming Model
	Messaging Domains
	Point-To-Point Messaging
	Publish/Subscribe Messaging
	Domain-Specific and Unified APIs

	Programming Objects
	Connection Factories and Connections
	Sessions
	Messages
	Message Header
	Message Properties
	Message Body

	Producing a Message
	Consuming a Message
	Synchronous and Asynchronous Consumers
	Using Selectors to Filter Messages
	Using Durable Subscribers

	The Request-Reply Pattern
	Reliable Message Delivery
	Acknowledgements
	Transactions
	Local Transactions
	Distributed Transactions

	Persistent Storage

	A Message’s Journey Through the System
	Message Production
	Message Handling and Routing
	Message Consumption
	Message End-of-Life

	Design and Performance
	Working with SOAP Messages
	Java and C Clients

	The Message Queue Broker
	Broker Services
	Connection Services
	Port Mapper Service
	Thread Pool Management

	Message Delivery Services
	Physical Destinations
	Managing Destinations
	Configuring Physical Destinations

	Managing Memory
	Destination Message Limits
	System-Wide Message Limits
	System Memory Thresholds

	Persistence Services
	File-Based Persistence
	JDBC-Based Persistence

	Security Services
	Authentication and Authorization
	JAAS-Based Authentication
	Encryption

	Bridge Services
	JMS Bridge Service
	STOMP Bridge Service

	Monitoring Services
	Metrics Generator
	Logger
	Metrics Message Producer
	JMX MBeans
	Java ES Monitoring Framework Support

	Administration Tools
	Built-in Administration Tools
	JMX-Based Administration

	Administration Tasks
	Supporting a Development Environment
	Supporting a Production Environment
	Setup Operations
	Maintenance Operations

	Broker Clusters
	Cluster Models
	Cluster Message Delivery
	Propagation of Information Across a Cluster
	Message Delivery Mechanisms

	Conventional Clusters
	Enhanced Clusters
	Cluster Models Compared
	Cluster Configuration

	Message Queue and Java EE
	JMS/Java EE Programming: Message-Driven Beans
	Java EE Application Server Support

	Message Queue Implementation of Optional JMS Functionality
	Optional Features

	Message Queue Features
	Feature List

	Glossary
	Index

