

GlassFish Server Open Source Edition
Add-On Component Development Guide

Release 3.1.2

February 2012

This document explains how to use published interfaces of
GlassFish Server Open Source Edition to develop add-on
components for GlassFish Server. This document explains
how to perform only those tasks that ensure that the add-on
component is suitable for GlassFish Server.

This document is for software developers who are
developing add-on components for GlassFish Server. This
document assumes that the developers are working with a
distribution of GlassFish Server. Access to the source code of
the GlassFish project is not required to perform the tasks in
this document. This document also assumes the ability to
program in the Java language.

GlassFish Server Open Source Edition Add-On Component Development Guide, Release 3.1.2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xi

1 Introduction to the Development Environment for GlassFish Server Add-On
Components

GlassFish Server Modular Architecture and Add-On Components .. 1-1
OSGi Alliance Module Management Subsystem.. 1-2
Hundred-Kilobyte Kernel .. 1-2
Overview of the Development Process for an Add-On Component ... 1-2

Writing HK2 Components .. 1-3
Extending the Administration Console .. 1-3
Extending the asadmin Utility .. 1-3
Adding Monitoring Capabilities.. 1-3
Adding Configuration Data for a Component .. 1-4
Adding Container Capabilities .. 1-4
Creating a Session Persistence Module... 1-4
Packaging and Delivering an Add-On Component.. 1-4

2 Writing HK2 Components

HK2 Component Model .. 2-1
Services in the HK2 Component Model .. 2-1
HK2 Runtime .. 2-2

Scopes of Services... 2-2
Instantiation of Components in HK2 .. 2-3
HK2 Lifecycle Interfaces.. 2-3

Inversion of Control... 2-3
Injecting HK2 Components .. 2-4
Instantiation Cascading in HK2 ... 2-4

Identifying a Class as an Add-On Component .. 2-5
Using the Apache Maven Build System to Develop HK2 Components 2-5

3 Extending the Administration Console

Administration Console Architecture .. 3-1
Implementing a Console Provider... 3-2

About Administration Console Templates.. 3-3
About Integration Points .. 3-3

iv

Specifying the ID of an Add-On Component... 3-3
Adding Functionality to the Administration Console .. 3-4

Adding a Node to the Navigation Tree .. 3-5
Adding Tabs to a Page... 3-6
Adding a Task to the Common Tasks Page ... 3-9
Adding a Task Group to the Common Tasks Page.. 3-10
Adding Content to a Page.. 3-11
Adding a Page to the Administration Console... 3-13

Adding Internationalization Support ... 3-13
Changing the Theme or Brand of the Administration Console ... 3-13
Creating an Integration Point Type ... 3-15

To Create an Integration Point Type .. 3-15

4 Extending the asadmin Utility

About the Administrative Command Infrastructure of GlassFish Server 4-1
Adding an asadmin Subcommand... 4-2

Representing an asadmin Subcommand as a Java Class .. 4-2
Specifying the Name of an asadmin Subcommand... 4-2
Ensuring That an AdminCommand Implementation Is Stateless... 4-3
Example of Adding an asadmin Subcommand.. 4-3

Adding Parameters to an asadmin Subcommand ... 4-3
Representing a Parameter of an asadmin Subcommand .. 4-4
Identifying a Parameter of an asadmin Subcommand.. 4-4
Specifying Whether a Parameter Is an Option or an Operand.. 4-4
Specifying the Name of an Option .. 4-5
Specifying the Acceptable Values of a Parameter ... 4-5
Specifying the Default Value of a Parameter ... 4-6
Specifying Whether a Parameter Is Required or Optional... 4-6
Example of Adding Parameters to an asadmin Subcommand .. 4-6

Making asadmin Subcommands Cluster-Aware... 4-7
Specifying Allowed Targets.. 4-7
The Target Utility .. 4-8
Specifying asadmin Subcommand Execution .. 4-9
Subcommand Preprocessing and Postprocessing... 4-9
Running a Command from Another Command .. 4-10

Adding Message Text Strings to an asadmin Subcommand.. 4-11
Enabling an asadmin Subcommand to Run.. 4-13
Setting the Context of an asadmin Subcommand .. 4-13
Changing the Brand in the GlassFish Server CLI... 4-13
Examples of Extending the asadmin Utility.. 4-15
Implementing Create, Delete, and List Commands Using Annotations.................................... 4-18

Command Patterns ... 4-19
Resolvers... 4-19
The @Create Annotation .. 4-20
The @Delete Annotation .. 4-21
The @Listing Annotation .. 4-21
Create Command Decorators .. 4-22

v

Delete Command Decorators .. 4-23
Specifying Command Execution... 4-25
Using Multiple Command Annotations .. 4-25

5 Adding Monitoring Capabilities

Defining Statistics That Are to Be Monitored .. 5-1
Defining an Event Provider .. 5-2
Sending an Event.. 5-6

Updating the Monitorable Object Tree .. 5-7
Creating Event Listeners ... 5-7
Representing a Component's Statistics in an Event Listener Class .. 5-8
Subscribing to Events From Event Provider Classes .. 5-9
Registering an Event Listener.. 5-10

Dotted Names and REST URLs for an Add-On Component's Statistics 5-11
Example of Adding Monitoring Capabilities .. 5-12

6 Adding Configuration Data for a Component

How GlassFish Server Stores Configuration Data .. 6-1
Defining an Element.. 6-1

To Define an Element .. 6-2
Defining an Attribute of an Element.. 6-3

Representing an Attribute of an Element ... 6-3
Specifying the Data Type of an Attribute ... 6-3
Identifying an Attribute of an Element... 6-3
Specifying the Name of an Attribute... 6-3
Specifying the Default Value of an Attribute... 6-3
Specifying Whether an Attribute Is Required or Optional .. 6-3
Example of Defining an Attribute of an Element .. 6-4

Defining a Subelement ... 6-4
To Define a Subelement .. 6-4

Validating Configuration Data .. 6-5
Initializing a Component's Configuration Data .. 6-6

To Define a Component's Initial Configuration Data... 6-6
To Write a Component's Initial Configuration Data to the domain.xml File 6-7

Creating a Transaction to Update Configuration Data ... 6-9
To Create a Transaction to Update Configuration Data... 6-9

Dotted Names and REST URLs of Configuration Attributes... 6-10
Examples of Adding Configuration Data for a Component ... 6-11

7 Adding Container Capabilities

Creating a Container Implementation ... 7-1
Marking the Class With the @Service Annotation ... 7-1
Implementing the Container Interface... 7-2

Adding an Archive Type .. 7-3
Implementing the ArchiveHandler Interface... 7-4

Creating Connector Modules ... 7-5

vi

Associating File Types With Containers by Using the Sniffer Interface 7-5
Example of Adding Container Capabilities .. 7-7

Container Component Code... 7-7
Web Client Code ... 7-12

8 Creating a Session Persistence Module

Implementing the PersistenceStrategyBuilder Interface ... 8-1

9 Packaging, Integrating, and Delivering an Add-On Component

Packaging an Add-On Component ... 9-1
Integrating an Add-On Component With GlassFish Server.. 9-1
Delivering an Add-On Component Through Update Tool.. 9-2

A Integration Point Reference

Integration Point Attributes .. A-1
org.glassfish.admingui:navNode Integration Point... A-2
org.glassfish.admingui:rightPanel Integration Point... A-3
org.glassfish.admingui:rightPanelTitle Integration Point .. A-3
org.glassfish.admingui:serverInstTab Integration Point .. A-4
org.glassfish.admingui:commonTask Integration Point... A-4
org.glassfish.admingui:configuration Integration Point .. A-5
org.glassfish.admingui:resources Integration Point... A-5
org.glassfish.admingui:customtheme Integration Point... A-6
org.glassfish.admingui:masthead Integration Point... A-6
org.glassfish.admingui:loginimage Integration Point... A-6
org.glassfish.admingui:loginform Integration Point... A-7
org.glassfish.admingui:versioninfo Integration Point... A-7

vii

viii

List of Examples

2–1 Example Implementation of PostContruct and PreDestroy ... 2-3
2–2 Example of Instantiation Cascading... 2-4
2–3 Example of the Optional Elements of the @Service Annotation ... 2-5
2–4 Example of the Maven Plug-In Configuration ... 2-5
2–5 Example of META-INF/services File Generation ... 2-6
3–1 Example ConsoleProvider Implementation... 3-2
3–2 Example Tree Node Integration Point ... 3-5
3–3 Example JavaServer Faces Page for a Tree Node ... 3-6
3–4 Example Tab Integration Point ... 3-7
3–5 Example Tab Set Integration Points ... 3-7
3–6 Example JavaServer Faces Page for a Tab ... 3-8
3–7 Example Task Integration Point.. 3-9
3–8 Example JavaServer Faces Page for a Task ... 3-9
3–9 Example Task Group Integration Point.. 3-10
3–10 Example JavaServer Faces Page for a Task Group.. 3-11
3–11 Example Resources Page Implementation Point... 3-11
3–12 Example JavaServer Faces Page for a Resource Page Item.. 3-12
3–13 Example JavaServer Faces Page for a Property Sheet... 3-13
3–14 Example Custom Theme Integration Point.. 3-14
3–15 Example of Branding Integration Points .. 3-14
4–1 Adding an asadmin Subcommand ... 4-3
4–2 Adding Parameters to an asadmin Subcommand .. 4-6
4–3 Adding Message Strings to an asadmin Subcommand .. 4-12
4–4 BrandingVersion.properties File for Changing the Brand in the GlassFish Server CLI

4-14
4–5 asadmin Subcommand With Empty execute Method ... 4-15
4–6 asadmin Subcommand for Retrieving and Displaying Information 4-16
4–7 asadmin Subcommand for Updating Configuration Data ... 4-17
5–1 Defining an Event Provider by Writing a Java Class... 5-3
5–2 Defining an Event Provider by Writing an XML Fragment ... 5-5
5–3 Manifest Entry for Event Providers That Are Defined as Java Classes 5-6
5–4 Sending an Event .. 5-6
5–5 Representing a Component's Statistics in an Event Listener Class 5-9
5–6 Subscribing to Events From Event Provider Classes.. 5-10
5–7 Registering an Event Listener .. 5-11
5–8 Event Provider Class ... 5-12
5–9 Bootstrap Class ... 5-13
5–10 Listener Class.. 5-14
5–11 MBean Interface.. 5-15
5–12 MBean Implementation... 5-15
6–1 Declaration of an Interface That Defines an Element .. 6-2
6–2 Defining an Attribute of an Element.. 6-4
6–3 Declaring an Interface to Represent a Subelement .. 6-4
6–4 Identifying a Subelement to its Parent Element ... 6-5
6–5 Specifying a Range of Valid Values for an Integer .. 6-6
6–6 Specifying Regular Expression Matching ... 6-6
6–7 XML Data Fragment ... 6-7
6–8 Writing a Component's Initial Configuration Data to the domain.xml File 6-8
6–9 domain.xml File After Initialization.. 6-8
6–10 Creating a Transaction to Update Configuration Data ... 6-9
6–11 Parent Element Definition .. 6-11
6–12 Subelement Definition... 6-12
6–13 XML Data Fragment for Initializing the greeter-container-config Element 6-13
7–1 Example Implementation of Container .. 7-2

ix

7–2 Example Implementation of Deployer .. 7-2
7–3 Annotation to Denote a Container's Component... 7-7
7–4 Application Container Class ... 7-8
7–5 Container Class ... 7-9
7–6 Deployer Class... 7-9
7–7 Sniffer Class .. 7-11
7–8 Container Client Class... 7-12
7–9 Component for Container Client ... 7-13
7–10 Deployment Descriptor for Container Client .. 7-13
8–1 Implementing PersistenceStrategyBuilder With a Custom Web Session Manager.... 8-2
8–2 Session Manager Configuration in the glassfish-web.xml File ... 8-3

x

List of Tables

6–1 Commonly Used Annotations for Validating GlassFish Server Configuration Data...... 6-5

xi

Preface

This document explains how to use published interfaces of GlassFish Server Open
Source Edition to develop add-on components for GlassFish Server. This document
explains how to perform only those tasks that ensure that the add-on component is
suitable for GlassFish Server.

This document is for software developers who are developing add-on components for
GlassFish Server. This document assumes that the developers are working with a
distribution of GlassFish Server. Access to the source code of the GlassFish project is
not required to perform the tasks in this document. This document also assumes the
ability to program in the Java language.

This preface contains information about and conventions for the entire GlassFish
Server Open Source Edition (GlassFish Server) documentation set.

GlassFish Server 3.1.2 is developed through the GlassFish project open-source
community at http://glassfish.java.net/. The GlassFish project provides a
structured process for developing the GlassFish Server platform that makes the new
features of the Java EE platform available faster, while maintaining the most important
feature of Java EE: compatibility. It enables Java developers to access the GlassFish
Server source code and to contribute to the development of the GlassFish Server. The
GlassFish project is designed to encourage communication between Oracle engineers
and the community.

The following topics are addressed here:

■ GlassFish Server Documentation Set

■ Related Documentation

■ Typographic Conventions

■ Symbol Conventions

■ Default Paths and File Names

■ Documentation, Support, and Training

■ Searching Oracle Product Documentation

■ Documentation Accessibility

GlassFish Server Documentation Set
The GlassFish Server documentation set describes deployment planning and system
installation. For an introduction to GlassFish Server, refer to the books in the order in
which they are listed in the following table.

xii

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based
summary of the supported hardware, operating system, Java
Development Kit (JDK), and database drivers.

Quick Start Guide Explains how to get started with the GlassFish Server product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of GlassFish Server.
This guide also describes differences between adjacent product
releases and configuration options that can result in
incompatibility with the product specifications.

Deployment Planning Guide Explains how to build a production deployment of GlassFish
Server that meets the requirements of your system and enterprise.

Administration Guide Explains how to configure, monitor, and manage GlassFish Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from
the Administration Console are provided in the Administration
Console online help.

Security Guide Provides instructions for configuring and administering GlassFish
Server security.

Application Deployment
Guide

Explains how to assemble and deploy applications to the
GlassFish Server and provides information about deployment
descriptors.

Application Development
Guide

Explains how to create and implement Java Platform, Enterprise
Edition (Java EE platform) applications that are intended to run
on the GlassFish Server. These applications follow the open Java
standards model for Java EE components and application
programmer interfaces (APIs). This guide provides information
about developer tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of GlassFish Server to
develop add-on components for GlassFish Server. This document
explains how to perform only those tasks that ensure that the
add-on component is suitable for GlassFish Server.

Embedded Server Guide Explains how to run applications in embedded GlassFish Server
and to develop applications in which GlassFish Server is
embedded.

High Availability
Administration Guide

Explains how to configure GlassFish Server to provide higher
availability and scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of GlassFish Server.

Troubleshooting Guide Describes common problems that you might encounter when
using GlassFish Server and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using
GlassFish Server.

Reference Manual Provides reference information in man page format for GlassFish
Server administration commands, utility commands, and related
concepts.

Message Queue Release
Notes

Describes new features, compatibility issues, and existing bugs for
Open Message Queue.

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging
service.

xiii

Related Documentation
The following tutorials explain how to develop Java EE applications:

■ Your First Cup: An Introduction to the Java EE Platform
(http://download.oracle.com/javaee/6/firstcup/doc/). For
beginning Java EE programmers, this short tutorial explains the entire process for
developing a simple enterprise application. The sample application is a web
application that consists of a component that is based on the Enterprise JavaBeans
specification, a JAX-RS web service, and a JavaServer Faces component for the
web front end.

■ The Java EE 6 Tutorial
(http://download.oracle.com/javaee/6/tutorial/doc/). This
comprehensive tutorial explains how to use Java EE 6 platform technologies and
APIs to develop Java EE applications.

Javadoc tool reference documentation for packages that are provided with GlassFish
Server is available as follows.

■ The API specification for version 6 of Java EE is located at
http://download.oracle.com/javaee/6/api/.

■ The API specification for GlassFish Server 3.1.2, including Java EE 6 platform
packages and nonplatform packages that are specific to the GlassFish Server
product, is located at http://glassfish.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications
(http://www.oracle.com/technetwork/java/javaee/tech/index.html)
might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see the NetBeans Documentation, Training &
Support page (http://www.netbeans.org/kb/).

For information about the Java DB database for use with the GlassFish Server, see the
Java DB product page
(http://www.oracle.com/technetwork/java/javadb/overview/index.ht
ml).

The Java EE Samples project is a collection of sample applications that demonstrate a
broad range of Java EE technologies. The Java EE Samples are bundled with the Java
EE Software Development Kit (SDK) and are also available from the Java EE Samples
project page (http://java.net/projects/glassfish-samples).

Message Queue
Administration Guide

Explains how to set up and manage a Message Queue messaging
system.

Message Queue Developer's
Guide for JMX Clients

Describes the application programming interface in Message
Queue for programmatically configuring and monitoring Message
Queue resources in conformance with the Java Management
Extensions (JMX).

Message Queue Developer's
Guide for Java Clients

Provides information about concepts and procedures for
developing Java messaging applications (Java clients) that work
with GlassFish Server.

Message Queue Developer's
Guide for C Clients

Provides programming and reference information for developers
working with Message Queue who want to use the C language
binding to the Message Queue messaging service to send, receive,
and process Message Queue messages.

Book Title Description

xiv

Typographic Conventions
The following table describes the typographic changes that are used in this book.

Symbol Conventions
The following table explains symbols that might be used in this book.

Default Paths and File Names
The following table describes the default paths and file names that are used in this
book.

Typeface Meaning Example

AaBbCc123 The names of commands, files,
and directories, and onscreen
computer output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with
a real name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms
to be emphasized (note that some
emphasized items appear bold
online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of
choices for a required
command option.

-d {y|n} The -d option requires that you
use either the y argument or the
n argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose
New. From the New submenu,
choose Templates.

Placeholder Description Default Value

as-install Represents the base installation
directory for GlassFish Server.

In configuration files, as-install is
represented as follows:

${com.sun.aas.installRoot}

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac OS operating system:

user's-home-directory/glassfish3/glassfish

Installations on the Windows operating system:

SystemDrive:\glassfish3\glassfish

xv

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation
(http://www.oracle.com/technetwork/indexes/documentation/inde
x.html)

■ Support (http://www.oracle.com/us/support/index.html)

■ Training (http://education.oracle.com/)

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the Oracle Documentation
(http://www.oracle.com/technetwork/indexes/documentation/index.h
tml) web site, you can use a search engine by typing the following syntax in the
search field:

search-term site:oracle.com

For example, to search for "broker," type the following:

broker site:oracle.com

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

as-install-parent Represents the parent of the base
installation directory for GlassFish
Server.

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac operating system:

user's-home-directory/glassfish3

Installations on the Windows operating system:

SystemDrive:\glassfish3

domain-root-dir Represents the directory in which a
domain is created by default.

as-install/domains/

domain-dir Represents the directory in which a
domain's configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

instance-dir Represents the directory for a server
instance.

domain-dir/instance-name

Placeholder Description Default Value

xvi

1

Introduction to the Development Environment for GlassFish Server Add-On Components 1-1

1Introduction to the Development
Environment for GlassFish Server Add-On

Components

GlassFish Server Open Source Edition enables an external vendor such as an
independent software vendor (ISV), original equipment manufacturer (OEM), or
system integrator to incorporate GlassFish Server into a new product with the
vendor's own brand name. External vendors can extend the functionality of GlassFish
Server by developing add-on components for GlassFish Server. GlassFish Server
provides interfaces to enable add-on components to be configured, managed, and
monitored through existing GlassFish Server tools such as the Administration Console
and the asadmin utility.

The following topics are addressed here:

■ GlassFish Server Modular Architecture and Add-On Components

■ OSGi Alliance Module Management Subsystem

■ Hundred-Kilobyte Kernel

■ Overview of the Development Process for an Add-On Component

GlassFish Server Modular Architecture and Add-On Components
GlassFish Server has a modular architecture in which the features of GlassFish Server
are provided by a consistent set of components that interact with each other. Each
component provides a small set of functionally related features.

The modular architecture of GlassFish Server enables users to download and install
only the components that are required for the applications that are being deployed. As
a result, start-up times, memory consumption, and disk space requirements are all
minimized.

The modular architecture of GlassFish Server enables you to extend the basic
functionality of GlassFish Server by developing add-on components. An add-on
component is an encapsulated definition of reusable code that has the following
characteristics:

■ The component provides a set of Java classes.

■ The component offers services and public interfaces.

■ The component implements the public interfaces with a set of private classes.

■ The component depends on other components.

OSGi Alliance Module Management Subsystem

1-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

Add-on components that you develop interact with GlassFish Server in the same way
as components that are supplied in GlassFish Server distributions.

You can create and offer new or updated add-on components at any time. GlassFish
Server administrators can install add-on components and update or remove installed
components after GlassFish Server is installed. For more information, see "Extending
and Updating GlassFish Server" in GlassFish Server Open Source Edition Administration
Guide.

OSGi Alliance Module Management Subsystem
To enable components to be added when required, GlassFish Server provides a
lightweight and extensible kernel that uses the module management subsystem from
the OSGi Alliance (http://www.osgi.org/). Any GlassFish Server component that
plugs in to this kernel must be implemented as an OSGi bundle. To enable an add-on
component to plug in to the GlassFish Server kernel in the same way as other
components, package the component as an OSGi bundle. For more information, see
Packaging an Add-On Component.

The default OSGi module management subsystem in GlassFish Server is the Apache
Felix OSGi framework (http://felix.apache.org). However, the GlassFish
Server kernel uses only the OSGi Service Platform Release 4
(http://www.osgi.org/Release4/HomePage) API. Therefore, GlassFish Server
supports other OSGi module management subsystems that are compatible with the
OSGi Service Platform Release 4 API.

Hundred-Kilobyte Kernel
The Hundred-Kilobyte Kernel (HK2) (https://hk2.dev.java.net/) is the
lightweight and extensible kernel of GlassFish Server. HK2 consists of the following
technologies:

■ Module subsystem. The HK2 module subsystem provides isolation between
components of the GlassFish Server. The HK2 module subsystem is compatible
with existing technologies such as the OSGi framework.

■ Component model. The HK2 component model eases the development of
components that are also services. GlassFish Server discovers these components
automatically and dynamically. HK2 components use injection of dependencies to
express dependencies on other components. GlassFish Server provides two-way
mappings between the services of an HK2 component and OSGi services.

For more information, see Writing HK2 Components.

Overview of the Development Process for an Add-On Component
To ensure that an add-on component behaves identically to components that are
supplied in GlassFish Server distributions, the component must meet the following
requirements:

■ If the component generates management data or monitoring data, it must provide
that data to other GlassFish Server components in the same way as other GlassFish
Server components.

■ If the component generates management data or monitoring data, it must provide
that data to users through GlassFish Server administrative interfaces such as
Administration Console and the asadmin utility.

Overview of the Development Process for an Add-On Component

Introduction to the Development Environment for GlassFish Server Add-On Components 1-3

■ The component must be packaged and delivered as an OSGi bundle.

To develop add-on components that meet these requirements, follow the development
process that is described in the following sections:

■ Writing HK2 Components

■ Extending the Administration Console

■ Extending the asadmin Utility

■ Adding Monitoring Capabilities

■ Adding Configuration Data for a Component

■ Adding Container Capabilities

■ Creating a Session Persistence Module

■ Packaging and Delivering an Add-On Component

Writing HK2 Components
The Hundred-Kilobyte Kernel (HK2) is the lightweight and extensible kernel of
GlassFish Server. To interact with GlassFish Server, add-on components plug in to this
kernel. In the HK2 component model, the functions of an add-on component are
declared through a contract-service implementation paradigm. An HK2 contract
identifies and describes the building blocks or the extension points of an application.
An HK2 service implements an HK2 contract.

For more information, see Writing HK2 Components.

Extending the Administration Console
The Administration Console is a browser-based tool for administering GlassFish
Server. It features an easy-to-navigate interface and online help. Extending the
Administration Console enables you to provide a graphical user interface for
administering your add-on component. You can use any of the user interface features
of the Administration Console, such as tree nodes, links on the Common Tasks page,
tabs and sub-tabs, property sheets, and JavaServer Faces pages. Your add-on
component implements a marker interface and provides a configuration file that
describes how your customizations integrate with the Administration Console.

For more information, see Extending the Administration Console.

Extending the asadmin Utility
The asadmin utility is a command-line tool for configuring and administering
GlassFish Server. Extending the asadmin utility enables you to provide administrative
interfaces for an add-on component that are consistent with the interfaces of other
GlassFish Server components. A user can run asadmin subcommands either from a
command prompt or from a script. For more information about the asadmin utility, see
the asadmin(1M) man page.

For more information, see Extending the asadmin Utility.

Adding Monitoring Capabilities
Monitoring is the process of reviewing the statistics of a system to improve
performance or solve problems. By monitoring the state of components and services
that are deployed in the GlassFish Server, system administrators can identify

Overview of the Development Process for an Add-On Component

1-4 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

performance bottlenecks, predict failures, perform root cause analysis, and ensure that
everything is functioning as expected. Monitoring data can also be useful in
performance tuning and capacity planning.

An add-on component typically generates statistics that the GlassFish Server can
gather at run time. Adding monitoring capabilities enables an add-on component to
provide statistics to GlassFish Server in the same way as components that are supplied
in GlassFish Server distributions. As a result, system administrators can use the same
administrative interfaces to monitor statistics from any installed GlassFish Server
component, regardless of the origin of the component.

For more information, see Adding Monitoring Capabilities.

Adding Configuration Data for a Component
The configuration data of a component determines the characteristics and runtime
behavior of a component. GlassFish Server provides interfaces to enable an add-on
component to store its configuration data in the same way as other GlassFish Server
components. These interfaces are similar to interfaces that are defined in Java
Specification Request (JSR) 222: Java Architecture for XML Binding (JAXB) 2.0
(http://jcp.org/en/jsr/detail?id=222). By using these interfaces to store
configuration data, you ensure that the add-on component is fully integrated with
GlassFish Server. As a result, administrators can configure an add-on component in
the same way as they can configure other GlassFish Server components.

For more information, see Adding Configuration Data for a Component.

Adding Container Capabilities
Applications run on GlassFish Server in containers. GlassFish Server enables you to
create containers that extend or replace the existing containers of GlassFish Server.
Adding container capabilities enables you to run new types of applications and to
deploy new archive types in GlassFish Server.

For more information, see Adding Container Capabilities.

Creating a Session Persistence Module
GlassFish Server enables you to create a session persistence module in the web
container for high availability-related functionality by implementing the
PersistenceStrategyBuilder interface . Using the PersistenceStrategyBuilder
interface in an HK2 service makes the session manager extensible because you can
implement a new persistence type without having to modify the web container code.

For information about other high-availability, session persistence solutions, see
"Configuring High Availability Session Persistence and Failover" in GlassFish Server
Open Source Edition High Availability Administration Guide.

For more information, see Creating a Session Persistence Module.

Packaging and Delivering an Add-On Component
Packaging an add-on component enables the component to interact with the GlassFish
Server kernel in the same way as other components. Integrating a component with
GlassFish Server enables GlassFish Server to discover the component at runtime. If an
add-on component is an extension or update to existing installations of GlassFish
Server, deliver the component through Update Tool.

Overview of the Development Process for an Add-On Component

Introduction to the Development Environment for GlassFish Server Add-On Components 1-5

For more information, see Packaging, Integrating, and Delivering an Add-On
Component.

Overview of the Development Process for an Add-On Component

1-6 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

2

Writing HK2 Components 2-1

2Writing HK2 Components

The Hundred-Kilobyte Kernel (HK2) is the lightweight and extensible kernel of
GlassFish Server. To interact with GlassFish Server, add-on components plug in to this
kernel. In the HK2 component model, the functions of an add-on component are
declared through a contract-service implementation paradigm. An HK2 contract
identifies and describes the building blocks or the extension points of an application.
An HK2 service implements an HK2 contract.

The following topics are addressed here:

■ HK2 Component Model

■ Services in the HK2 Component Model

■ HK2 Runtime

■ Inversion of Control

■ Identifying a Class as an Add-On Component

■ Using the Apache Maven Build System to Develop HK2 Components

HK2 Component Model
The Hundred-Kilobyte Kernel (HK2) provides a module system and component
model for building complex software systems. HK2 forms the core of GlassFish
Server's architecture.

The module system is responsible for instantiating classes that constitute the
application functionality. The HK2 runtime complements the module system by
creating objects. It configures such objects by:

■ Injecting other objects that are needed by a newly instantiated object

■ Injecting configuration information needed for that object

■ Making newly created objects available, so that they can then be injected to other
objects that need it

Services in the HK2 Component Model
An HK2 service identifies the building blocks or the extension points of an application.
A service is a plain-old Java object (POJO) with the following characteristics:

■ The object implements an interface.

■ The object is declared in a JAR file with the META-INF/services file.

HK2 Runtime

2-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

To clearly separate the contract interface and its implementation, the HK2 runtime
requires the following information:

■ Which interfaces are contracts

■ Which implementations of such interfaces are services

Interfaces that define a contract are identified by the
org.jvnet.hk2.annotations.Contract annotation.

@Retention(RUNTIME)
@Target(TYPE)
public @interface Contract {
}

Implementations of such contracts should be identified with an
org.jvnet.hk2.annotations.Service annotation so that the HK2 runtime can
recognize them as @Contract implementations.

@Retention(RUNTIME)
@Target(TYPE)
public @interface Service {
 ...
}

For more information, see Service
(http://hk2.java.net/auto-depends/apidocs/org/jvnet/hk2/annotati
ons/Service.html).

HK2 Runtime
Once Services are defined, the HK2 runtime can be used to instantiate or retrieve
instances of services. Each service instance has a scope, specified as singleton, per
thread, per application, or a custom scope.

Scopes of Services
You can specify the scope of a service by adding an
org.jvnet.hk2.annotations.Scoped annotation to the class-level of your @Service
implementation class. Scopes are also services, so they can be custom defined and
added to the HK2 runtime before being used by other services. Each scope is
responsible for storing the service instances to which it is tied; therefore, the HK2
runtime does not rely on predefined scopes (although it comes with a few predefined
ones).

@Contract
public abstract class Scope {
 public abstract ScopeInstance current();
}

The following code fragment shows how to set the scope for a service to the
predefined Singleton scope:

@Service
public Singleton implements Scope {
 ...
}

@Scope(Singleton.class)
@Service

Inversion of Control

Writing HK2 Components 2-3

public class SingletonService implements RandomContract {
 ...
}

You can define a new Scope implementation and use that scope on your @Service
implementations. You will see that the HK2 runtime uses the Scope instance to store
and retrieve service instances tied to that scope.

Instantiation of Components in HK2
Do not call the new method to instantiate components. Instead, retrieve components by
using the Habitat instance. The simplest way to use the Habitat instance is through a
getComponent(ClassT contract) call:

public <T> T getComponent(Class<T> clazz) throws ComponentException;

More APIs are available at Habitat
(http://hk2.java.net/auto-depends/apidocs/org/jvnet/hk2/componen
t/Habitat.html).

HK2 Lifecycle Interfaces
Components can attach behaviors to their construction and destruction events by
implementing the org.jvnet.hk2.component.PostConstruct
(http://hk2.java.net/auto-depends/apidocs/org/jvnet/hk2/componen
t/PostConstruct.html) interface, the org.jvnet.hk2.component.PreDestroy
(http://hk2.java.net/auto-depends/apidocs/org/jvnet/hk2/componen
t/PreDestroy.html) interface, or both. These are interfaces rather than annotations
for performance reasons.

The PostConstruct interface defines a single method, postConstruct, which is called
after a component has been initialized and all its dependencies have been injected.

The PreDestroy interface defines a single method, preDestroy, which is called just
before a component is removed from the system.

Example 2–1 Example Implementation of PostContruct and PreDestroy

@Service(name="com.example.container.MyContainer")
public class MyContainer implements Container, PostConstruct, PreDestroy {
 @Inject
 Logger logger;
 ...
 public void postConstruct() {
 logger.info("Starting up.");
 }

 public void preDestroy() {
 logger.info("Shutting down.");
 }
}

Inversion of Control
Inversion of control (IoC) refers to a style of software architecture where the behavior
of a system is determined by the runtime capabilities of the individual, discrete
components that make up the system. This architecture is different from traditional

Inversion of Control

2-4 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

styles of software architecture, where all the components of a system are specified at
design-time. With IoC, discrete components respond to high-level events to perform
actions. While performing these actions, the components typically rely on other
components to provide other actions. In an IoC system, components use injection to
gain access to other components.

Injecting HK2 Components
Services usually rely on other services to perform their tasks. The HK2 runtime
identifies the @Contract implementations required by a service by using the
org.jvnet.hk2.annotations.Inject
(http://hk2.java.net/auto-depends/apidocs/org/jvnet/hk2/annotati
ons/Inject.html) annotation. Inject can be placed on fields or setter methods of
any service instantiated by the HK2 runtime. The target service is retrieved and
injected during the calling service's instantiation by the component manager.

The following example shows how to use @Inject at the field level:

@Inject
ConfigService config;

The following example shows how to use @Inject at the setter level:

@Inject
public void set(ConfigService svc) {...}

Injection can further qualify the intended injected service implementation by using a
name and scope from which the service should be available:

@Inject(Scope=Singleton.class, name="deploy")
AdminCommand deployCommand;

Instantiation Cascading in HK2
Injection of instances that have not been already instantiated triggers more
instantiation. You can see this as a component instantiation cascade where some code
requests for a high-level service will, by using the @Inject annotation, require more
injection and instantiation of lower level services. This cascading feature keeps the
implementation as private as possible while relying on interfaces and the separation of
contracts and providers.

Example 2–2 Example of Instantiation Cascading

The following example shows how the instantiation of DeploymentService as a
Startup contract implementation will trigger the instantiation of the ConfigService.

@Contract
public interface Startup {...}

Iterable<Startup> startups;
startups = habitat.getComponents(Startup.class);

@Service
public class DeploymentService implements Startup {
 @Inject
 ConfigService config;
}

@Service

Using the Apache Maven Build System to Develop HK2 Components

Writing HK2 Components 2-5

public Class ConfigService implements ... {...}

Identifying a Class as an Add-On Component
GlassFish Server discovers add-on components by identifying Java programming
language classes that are annotated with the org.jvnet.hk2.annotation.Service
annotation.

To identify a class as an implementation of an GlassFish Server service, add the
org.jvnet.hk2.annotations.Service annotation at the class-definition level of your
Java programming language class.

@Service
public class SamplePlugin implements ConsoleProvider {
...
}

The @Service annotation has the following elements. All elements are optional.

name
The name of the service. The default value is an empty string.

scope
The scope to which this service implementation is tied. The default value is
org.glassfish.hk2.scopes.PerLookup.class.

factory
The factory class for the service implementation, if the service is created by a factory
class rather than by calling the default constructor. If this element is specified, the
factory component is activated, and Factory.getObject is used instead of the default
constructor. The default value of the factory element is
org.jvnet.hk2.component.Factory.class.

Example 2–3 Example of the Optional Elements of the @Service Annotation

The following example shows how to use the optional elements of the @Service
annotation:

@Service (name="MyService",
 scope=com.example.PerRequest.class,
 factory=com.example.MyCustomFactory)
public class SamplePlugin implements ConsoleProvider {
...
}

Using the Apache Maven Build System to Develop HK2 Components
If you are using Maven 2 to build HK2 components, invoke the auto-depends plug-in
for Maven so that the META-INF/services files are generated automatically during
build time.

Example 2–4 Example of the Maven Plug-In Configuration

<plugin>
 <groupId>org.glassfish.hk2</groupId>
 <artifactId>hk2-maven-plugin</artifactId>
 <configuration>

Using the Apache Maven Build System to Develop HK2 Components

2-6 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

 <includes>
 <include>com/example/**</include>
 </includes>
 </configuration>
</plugin>

Example 2–5 Example of META-INF/services File Generation

This example shows how to use @Contract
(http://hk2.java.net/auto-depends/apidocs/org/jvnet/hk2/annotati
ons/Contract.html) and @Service
(http://hk2.java.net/auto-depends/apidocs/org/jvnet/hk2/annotati
ons/Service.html) and the resulting META-INF/services files.

The interfaces and classes in this example are as follows:

package com.example.wallaby.annotations;
@Contract
public interface Startup {...}

package com.example.wombat;
@Contract
public interface RandomContract {...}

package com.example.wallaby;
@Service
public class MyService implements Startup, RandomContract, PropertyChangeListener
{
 ...
}

These interfaces and classes generate this META-INF/services file with the MyService
content:

com.example.wallaby.annotations.Startup
com.example.wombat.RandomContract

3

Extending the Administration Console 3-1

3Extending the Administration Console

The Administration Console is a browser-based tool for administering GlassFish
Server. It features an easy-to-navigate interface and online help. Extending the
Administration Console enables you to provide a graphical user interface for
administering your add-on component. You can use any of the user interface features
of the Administration Console, such as tree nodes, links on the Common Tasks page,
tabs and sub-tabs, property sheets, and JavaServer Faces pages. Your add-on
component implements a marker interface and provides a configuration file that
describes how your customizations integrate with the Administration Console.

This chapter refers to a simple example called console-sample-ip that illustrates how
to provide Administration Console features for a hypothetical add-on component.
Instructions for obtaining and using this example are available at the example's project
page
(https://wikis.oracle.com/display/GlassFish/V3SampleIpProject).
When you check out the code, it is placed in a directory named
glassfish-samples/v3/plugin/adminconsole/console-sample-ip/ in your current
directory. In this chapter, path names for the example files are relative to this directory.

The following topics are addressed here:

■ Administration Console Architecture

■ About Administration Console Templates

■ About Integration Points

■ Specifying the ID of an Add-On Component

■ Adding Functionality to the Administration Console

■ Adding Internationalization Support

■ Changing the Theme or Brand of the Administration Console

■ Creating an Integration Point Type

Administration Console Architecture
The Administration Console is a web application that is composed of OSGi bundles.
These bundles provide all the features of the Administration Console, such as the Web
Applications, Update Center, and Security content. To provide support for your
add-on component, create your own OSGi bundle that implements the parts of the
user interface that you need. Place your bundle in the modules directory of your
GlassFish Server installation, along with the other Administration Console bundles.

To learn how to package the Administration Console features for an add-on
component, go to the modules directory of your GlassFish Server installation and

Administration Console Architecture

3-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

examine the contents of the files named console-componentname-plugin.jar. Place
the console-sample-ip project bundle in the same place to deploy it and examine the
changes that it makes to the Administration Console.

The Administration Console includes a Console Add-On Component Service. The
Console Add-On Component Service is an HK2 service that acts as a façade to all
theAdministration Console add-on components. The Console Add-On Component
Service queries the various console providers for integration points so that it can
perform the actions needed for the integration (adding a tree node or a new tab, for
example). The interface name for this service is
org.glassfish.api.admingui.ConsolePluginService.

For details about the Hundred-Kilobyte Kernel (HK2) project, see Hundred-Kilobyte
Kernel and HK2 Component Model.

Each add-on component must contain a console provider implementation. This is a
Java class that implements the org.glassfish.api.admingui.ConsoleProvider
interface and uses the HK2 @Service annotation. The console provider allows your
add-on component to specify where your integration point configuration file is
located. This configuration file communicates to the Console Add-On Component
Service the customizations that your add-on component makes to the Administration
Console.

Implementing a Console Provider
The org.glassfish.api.admingui.ConsoleProvider interface has one required
method, getConfiguration. The getConfiguration method returns the location of
the console-config.xml file as a java.net.URL. If getConfiguration returns null, the
default location, META-INF/admingui/console-config.xml, is used. The
console-config.xml file is described in About Integration Points.

To implement the console provider for your add-on component, write a Java class that
is similar to the following example.

Example 3–1 Example ConsoleProvider Implementation

This example shows a simple implementation of the ConsoleProvider interface:

package org.glassfish.admingui.plugin;

import org.glassfish.api.admingui.ConsoleProvider;
import org.jvnet.hk2.annotations.Service;

import java.net.URL;

@Service
public class SamplePlugin implements ConsoleProvider {

 public URL getConfiguration() { return null; }
}

This implementation of getConfiguration returns null to specify that the
configuration file is in the default location. If you place the file in a nonstandard
location or give it a name other than console-config.xml, your implementation of
getConfiguration must return the URL where the file can be found.

You can find this example code in the file
project/src/main/java/org/glassfish/admingui/plugin/SamplePlugin.java.

Specifying the ID of an Add-On Component

Extending the Administration Console 3-3

About Administration Console Templates
GlassFish Server includes a set of templates that make it easier to create JavaServer
Faces pages for your add-on component. These templates use Templating for
JavaServer Faces Technology, which is also known as JSFTemplating.

Examples of JSFTemplating technology can be found in the following sections of this
chapter:

■ Creating a JavaServer Faces Page for Your Node

■ Creating JavaServer Faces Pages for Your Tabs

■ Creating a JavaServer Faces Page for Your Task

■ Creating a JavaServer Faces Page for Your Task Group

■ Creating a JavaServer Faces Page for Your Page Content

■ Adding a Page to the Administration Console

About Integration Points
The integration points for your add-on component are the individual Administration
Console user interface features that your add-on component will extend. You can
implement the following kinds of integration points:

■ Nodes in the navigation tree

■ Elements on the Common Tasks page of the Administration Console

■ JavaServer Faces pages

■ Tabs and sub-tabs

Specify all the integration points in a file named console-config.xml. In the example,
this file is in the directory project/src/main/resources/META-INF/admingui/. The
following sections describe how to create this file.

In addition, create JavaServer Faces pages that contain JSF code fragments to
implement the integration points. In the example, these files are in the directory
project/src/main/resources/. The content of these files depends on the integration
point you are implementing. The following sections describe how to create these
JavaServer Faces pages.

For reference information on integration points, see Integration Point Reference.

Specifying the ID of an Add-On Component
The console-config.xml file consists of a console-config element that encloses a
series of integration-point elements. The console-config element has one attribute,
id, which specifies a unique name or ID value for the add-on component.

In the example, the element is declared as follows:

<console-config id="sample">
 ...
</console-config>

You will also specify this ID value when you construct URLs to images, resources and
pages in your add-on component. See Adding a Node to the Navigation Tree for an
example.

For example, a URL to an image named my.gif might look like this:

Adding Functionality to the Administration Console

3-4 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

<sun:image url="/resource/sample/images/my.gif" />

The URL is constructed as follows:

■ /resource is required to locate any resource URL.

■ sample is the add-on component ID. You must choose a unique ID value.

■ images is a folder under the root of the add-on component JAR file.

Adding Functionality to the Administration Console
The integration-point elements in the console-config.xml file specify attributes for
the user interface features that you choose to implement. The example file provides
examples of most of the available kinds of integration points at this release. Your own
add-on component can use some or all of them.

For each integration-point element, specify the following attributes.

id
An identifier for the integration point.

parentId
The ID of the integration point's parent.

type
The type of the integration point.

priority
A numeric value that specifies the relative ordering of integration points for add-on
components that specify the same parentId. A lower number specifies a higher
priority (for example, 100 represents a higher priority than 400). The integration points
for add-on components are always placed after those in the basic Administration
Console. You might need to experiment to place the integration point where you want
it. This attribute is optional.

content
The content for the integration point, typically a JavaServer Faces page. In the
example, you can find the JavaServer Faces pages in the directory
project/src/main/resources/.

The following topics are addressed here:

■ Adding a Node to the Navigation Tree

■ Adding Tabs to a Page

■ Adding a Task to the Common Tasks Page

■ Adding a Task Group to the Common Tasks Page

■ Adding Content to a Page

■ Adding a Page to the Administration Console

Note: The order in which these attributes are specified does not
matter, and in the example console-config.xml file the order
varies. To improve readability, this chapter uses the same order
throughout.

Adding Functionality to the Administration Console

Extending the Administration Console 3-5

Adding a Node to the Navigation Tree
You can add a node to the navigation tree, either at the top level or under another
node. To add a node, use an integration point of type
org.glassfish.admingui:navNode. Use the parentId attribute to specify where the
new node should be placed. Any tree node, including those added by other add-on
components, can be specified. Examples include the following:

tree
At the top level

applicationServer
Under the GlassFish Server node

applications
Under the Applications node

resources
Under the Resources node

configuration
Under the Configuration node

webContainer
Under the Web Container node

httpService
Under the HTTP Service node

If you do not specify a parentId, the new content is added to the root of the
integration point, in this case the top level node, tree.

Example 3–2 Example Tree Node Integration Point

For example, the following integration-point element uses a parentId of tree to
place the new node at the top level.

 <integration-point
 id="samplenode"
 parentid="tree"
 type="org.glassfish.admingui:treeNode"
 priority="200"
 content="sampleNode.jsf"
 />

This example specifies the following values in addition to the parentId:

■ The id value, sampleNode, specifies the integration point ID.

■ The type value, org.glassfish.admingui:treeNode, specifies the integration
point type as a tree node.

■ The priority value, 200, specifies the order of the node on the tree.

Note: The webContainer and httpService nodes are available
only if you installed the web container module for the
Administration Console (the console-web-gui.jar OSGi bundle).

Adding Functionality to the Administration Console

3-6 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

■ The content value, sampleNode.jsf, specifies the JavaServer Faces page that
displays the node.

The example console-config.xml file provides other examples of tree nodes under
the Resources and Configuration nodes.

Creating a JavaServer Faces Page for Your Node
A JavaServer Faces page for a tree node uses the tag sun:treeNode. This tag provides
all the capabilities of the Project Woodstock tag webuijsf:treeNode.

Example 3–3 Example JavaServer Faces Page for a Tree Node

In the example, the sampleNode.jsf file has the following content:

<sun:treeNode
 id="treenode1"
 text="SampleTop"
 url="/sample/page/testPage.jsf?name=SampleTop"
 imageURL="/resource/sample/images/sample.png"
 >
 <sun:treeNode
 id="treenodebb"
 text="SampleBB"
 url="/sample/page/testPage.jsf?name=SampleBB"
 imageURL="resource/sample/images/sample.png" />
</sun:treeNode>

This file uses the sun:treenode tag to specify both a top-level tree node and another
node nested beneath it. In your own JavaServer Faces pages, specify the attributes of
this tag as follows:

id
A unique identifier for the tree node.

text
The node name that appears in the tree.

url
The location of the JavaServer Faces page that appears when you click the node. In the
example, most of the integration points use a very simple JavaServer Faces page called
testPage.jsf, which is in the src/main/resources/page/ directory. Specify the
integration point id value as the root of the URL; in this case, it is sample (see
Specifying the ID of an Add-On Component). The rest of the URL is relative to the
src/main/resources/ directory, where sampleNode.jsf resides.

The url tag in this example passes a name parameter to the JavaServer Faces page.

 imageURL
The location of a graphic to display next to the node name. In the example, the graphic
is always sample.png, which is in the src/main/resources/images/ directory. The
URL for this image is an absolute path, /resource/sample/images/sample.png, where
sample in the path is the integration point id value (see Specifying the ID of an Add-On
Component).

Adding Tabs to a Page
You can add a tab to an existing tab set, or you can create a tab set for your own page.
One way to add a tab or tab set is to use an integration point of type

Adding Functionality to the Administration Console

Extending the Administration Console 3-7

org.glassfish.admingui:serverInstTab, which adds a tab to the tab set on the main
GlassFish Server page of the Administration Console. You can also create sub-tabs.
Once again, the parentId element specifies where to place the tab or tab set.

Example 3–4 Example Tab Integration Point

In the example, the following integration-point element adds a new tab on the main
GlassFish Server page of the Administration Console:

 <integration-point
 id="sampletab"
 parentid="serverinsttabs"
 type="org.glassfish.admingui:serverInstTab"
 priority="500"
 content="sampleTab.jsf"
 />

This example specifies the following values:

■ The id value, sampleTab, specifies the integration point ID.

■ The parentId value, serverInstTabs, specifies the tab set associated with the
server instance. The GlassFish Server page is the only one of the default
Administration Console pages that has a tab set.

■ The type value, org.glassfish.admingui:serverInstTab, specifies the
integration point type as a tab associated with the server instance.

■ The priority value, 500, specifies the order of the tab within the tab set. This
value is optional.

■ The content value, sampleTab.jsf, specifies the JavaServer Faces page that
displays the tab.

Example 3–5 Example Tab Set Integration Points

The following integration-point elements add a new tab with two sub-tabs, also on
the main GlassFish Server page of the Administration Console:

 <integration-point
 id="sampletabwithsubtab"
 parentid="serverinsttabs"
 type="org.glassfish.admingui:serverInstTab"
 priority="300"
 content="sampleTabWithSubTab.jsf"
 />

 <integration-point
 id="samplesubtab1"
 parentid="sampletabwithsubtab"
 type="org.glassfish.admingui:serverInstTab"
 priority="300"
 content="sampleSubTab1.jsf"
 />
 <integration-point
 id="samplesubtab2"
 parentid="sampletabwithsubtab"
 type="org.glassfish.admingui:serverInstTab"
 priority="400"
 content="sampleSubTab2.jsf"
 />

Adding Functionality to the Administration Console

3-8 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

These examples specify the following values:

■ The id values, sampleTabWithSubTab, sampleSubTab1, and sampleSubTab2, specify
the integration point IDs for the tab and its sub-tabs.

■ The parentId of the new tab, serverInstTabs, specifies the tab set associated with
the server instance. The parentId of the two sub-tabs, sampleTabWithSubTab, is
the id value of this new tab.

■ The type value, org.glassfish.admingui:serverInstTab, specifies the
integration point type for all the tabs as a tab associated with the server instance.

■ The priority values specify the order of the tabs within the tab set. This value is
optional. In this case, the priority value for sampleTabWithSubTab is 300, which is
higher than the value for sampleTab. That means that sampleTabWithSubTab
appears to the left of sampleTab in the Administration Console. The priority values
for sampleSubTab1 and sampleSubTab2 are 300 and 400 respectively, so
sampleSubTab1 appears to the left of sampleSubTab2.

■ The content values, sampleTabWithSubTab.jsf, sampleSubTab1.jsf, and
sampleSubTab2.jsf, specify the JavaServer Faces pages that display the tabs.

Creating JavaServer Faces Pages for Your Tabs
A JavaServer Faces page for a tab uses the tag sun:tab. This tag provides all the
capabilities of the Project Woodstock tag webuijsf:tab.

Example 3–6 Example JavaServer Faces Page for a Tab

In the example, the sampleTab.jsf file has the following content:

<sun:tab id="sampletab" immediate="true" text="Sample First Tab">
 <!command
 setSessionAttribute(key="serverInstTabs" value="sampleTab");

gf.redirect(page="#{request.contextPath}/page/tabPage.jsf?name=Sample%20First%20Ta
b");
 />
</sun:tab>

In your own JavaServer Faces pages, specify the attributes of this tag as follows:

id
A unique identifier for the tab, in this case sampleTab.

immediate
If set to true, event handling for this component should be handled immediately (in
the Apply Request Values phase) rather than waiting until the Invoke Application
phase.

text
The tab name that appears in the tab set.

The JSF page displays tab content differently from the way the page for a node
displays node content. It invokes two handlers for the command event:
setSessionAttribute and gf.redirect. The gf.redirect handler has the same effect

Note: In the actual file there are no line breaks in the gf.redirect
value.

Adding Functionality to the Administration Console

Extending the Administration Console 3-9

for a tab that the url attribute has for a node. It navigates to a simple JavaServer Faces
page called tabPage.jsf, in the src/main/resources/page/ directory, passing the text
"Sample First Tab" to the page in a name parameter.

The sampleSubTab1.jsf and sampleSubTab2.jsf files are almost identical to
sampleTab.jsf. The most important difference is that each sets the session attribute
serverInstTabs to the base name of the JavaServer Faces file that corresponds to that
tab:

setSessionAttribute(key="serverInstTabs" value="sampleTab");

setSessionAttribute(key="serverInstTabs" value="sampleSubTab1");

setSessionAttribute(key="serverInstTabs" value="sampleSubTab2");

Adding a Task to the Common Tasks Page
You can add either a single task or a group of tasks to the Common Tasks page of the
Administration Console. To add a task or task group, use an integration point of type
org.glassfish.admingui:commonTask.

See Adding a Task Group to the Common Tasks Page for information on adding a task
group.

Example 3–7 Example Task Integration Point

In the example console-config.xml file, the following integration-point element
adds a task to the Deployment task group:

 <integration-point
 id="samplecommontask"
 parentid="deployment"
 type="org.glassfish.admingui:commonTask"
 priority="200"
 content="sampleCommonTask.jsf"
 />

This example specifies the following values:

■ The id value, sampleCommonTask, specifies the integration point ID.

■ The parentId value, deployment, specifies that the task is to be placed in the
Deployment task group.

■ The type value, org.glassfish.admingui:commonTask, specifies the integration
point type as a common task.

■ The priority value, 200, specifies the order of the task within the task group.

■ The content value, sampleCommonTask.jsf, specifies the JavaServer Faces page
that displays the task.

Creating a JavaServer Faces Page for Your Task
A JavaServer Faces page for a task uses the tag sun:commonTask. This tag provides all
the capabilities of the Project Woodstock tag webuijsf:commonTask.

Example 3–8 Example JavaServer Faces Page for a Task

In the example, the sampleCommonTask.jsf file has the following content:

<sun:commonTask

Adding Functionality to the Administration Console

3-10 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

 text="Sample Application Page"
 toolTip="Sample Application Page"
 onClick="return
admingui.woodstock.commonTaskHandler('treeForm:tree:applications:ejb',

'#{request.contextPath}/sample/page/testPage.jsf?name=Sample%20Application%20Page'
);">
</sun:commonTask>

This file uses the sun:commonTask tag to specify the task. In your own JavaServer Faces
pages, specify the attributes of this tag as follows:

text
The task name that appears on the Common Tasks page.

toolTip
The text that appears when a user places the mouse cursor over the task name.

onClick
Scripting code that is to be executed when a user clicks the task name.

Adding a Task Group to the Common Tasks Page
You can add a new group of tasks to the Common Tasks page to display the most
important tasks for your add-on component. To add a task group, use an integration
point of type org.glassfish.admingui:commonTask.

Example 3–9 Example Task Group Integration Point

In the example console-config.xml file, the following integration-point element
adds a new task group to the Common Tasks page:

 <integration-point
 id="samplegroup"
 parentid="commontaskssection"
 type="org.glassfish.admingui:commonTask"
 priority="500"
 content="sampleTaskGroup.jsf"
 />

This example specifies the following values:

■ The id value, sampleGroup, specifies the integration point ID.

■ The parentId value, commonTasksSection, specifies that the task group is to be
placed on the Common Tasks page.

■ The type value, org.glassfish.admingui:commonTask, specifies the integration
point type as a common task.

■ The priority value, 500, specifies the order of the task group on the Common
Tasks page. The low value places it at the end of the page.

■ The content value, sampleTaskGroup.jsf, specifies the JavaServer Faces page that
displays the task.

Note: In the actual file, there is no line break in the onClick
attribute value.

Adding Functionality to the Administration Console

Extending the Administration Console 3-11

Creating a JavaServer Faces Page for Your Task Group
A JavaServer Faces page for a task group uses the tag sun:commonTasksGroup. This tag
provides all the capabilities of the Project Woodstock tag webuijsf:commonTasksGroup.

Example 3–10 Example JavaServer Faces Page for a Task Group

In the example, the sampleTaskGroup.jsf file has the following content:

<sun:commonTasksGroup title="My Own Sample Group">
 <sun:commonTask
 text="Go To Sample Resource"
 toolTip="Go To Sample Resource"
 onClick="return
admingui.woodstock.commonTaskHandler('form:tree:resources:treeNode1',

'#{request.contextPath}/sample/page/testPage.jsf?name=Sample%20Resource%20Page');"
>
 </sun:commonTask>
 <sun:commonTask
 text="Sample Configuration"
 toolTip="Go To Sample Configuration"
 onClick="return
admingui.woodstock.commonTaskHandler('form:tree:configuration:sampleConfigNode',

'#{request.contextPath}/sample/page/testPage.jsf?name=Sample%20Configuration%20Pag
e');">
 </sun:commonTask>
</sun:commonTasksGroup>

This file uses the sun:commonTasksGroup tag to specify the task group, and two
sun:commonTask tags to specify the tasks in the task group. The sun:commonTasksGroup
tag has only one attribute, title, which specifies the name of the task group.

Adding Content to a Page
You can add content for your add-on component to an existing top-level page, such as
the Configuration page or the Resources page. To add content to one of these pages,
use an integration point of type org.glassfish.admingui:configuration or
org.glassfish.admingui:resources.

Example 3–11 Example Resources Page Implementation Point

In the example console-config.xml file, the following integration-point element
adds new content to the top-level Resources page:

 <integration-point
 id="sampleresourcelink"
 parentid="propsheetsection"
 type="org.glassfish.admingui:resources"
 priority="100"
 content="sampleResourceLink.jsf"
 />

This example specifies the following values:

Note: In the actual file, there are no line breaks in the onClick
attribute values.

Adding Functionality to the Administration Console

3-12 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

■ The id value, sampleResourceLink, specifies the integration point ID.

■ The parentId value, propSheetSection, specifies that the content is to be a section
of a property sheet on the page.

■ The type value, org.glassfish.admingui:resources, specifies the integration
point type as the Resources page.

To add content to the Configuration page, specify the type value as
org.glassfish.admingui:configuration.

■ The priority value, 100, specifies the order of the content on the Resources page.
The high value places it at the top of the page.

■ The content value, sampleResourceLink.jsf, specifies the JavaServer Faces page
that displays the new content on the Resources page.

Another integration-point element in the console-config.xml file places similar
content on the Configuration page.

Creating a JavaServer Faces Page for Your Page Content
A JavaServer Faces page for page content often uses the tag sun:property to specify a
property on a property sheet. This tag provides all the capabilities of the Project
Woodstock tag webuijsf:property.

Example 3–12 Example JavaServer Faces Page for a Resource Page Item

In the example, the sampleResourceLink.jsf file has the following content:

<sun:property>
 <sun:hyperlink
 toolTip="Sample Resource"
 url="/sample/page/testPage.jsf?name=Sample%20Resource%20Page">
 <sun:image url="/resource/sample/images/sample.png" />
 <sun:staticText text="Sample Resource" />
 </sun:hyperlink>
</sun:property>

<sun:property>
 <sun:hyperlink
 toolTip="Another"
 url="/sample/page/testPage.jsf?name=Another">
 <sun:image url="/resource/sample/images/sample.png" />
 <sun:staticText text="Another" />
 </sun:hyperlink>
</sun:property>

The file specifies two simple properties on the property sheet, one above the other.
Each consists of a sun:hyperlink element (a link to a URL). Within each
sun:hyperlink element is nested a sun:image element, specifying an image, and a
sun:staticText element, specifying the text to be placed next to the image.

Each sun:hyperlink element uses a toolTip attribute and a url attribute. Each url
attribute references the testPage.jsf file that is used elsewhere in the example,
specifying different content for the name parameter.

You can use many other kinds of user interface elements within a sun:property
element.

Changing the Theme or Brand of the Administration Console

Extending the Administration Console 3-13

Adding a Page to the Administration Console
Your add-on component may require new configuration tasks. In addition to
implementing commands that accomplish these tasks (see Chapter 4, "Extending the
asadmin Utility"), you can provide property sheets that enable users to configure your
component or to perform tasks such as creating and editing resources for it.

Example 3–13 Example JavaServer Faces Page for a Property Sheet

Most of the user interface features used in the example reference the file testPage.jsf
or (for tabs) the file tabPage.jsf. Both files are in the src/main/resources/page/
directory. The testPage.jsf file looks like this:

<!composition template="/templates/default.layout" guiTitle="TEST Sample Page
Title">
<!define name="content">
<sun:form id="propertyform">

<sun:propertySheet id="propertysheet">
 <sun:propertySheetSection id="propertysection">
 <sun:property id="prop1" labelAlign="left" noWrap="true"
 overlapLabel="false" label="Test Page Name:">
 <sun:staticText text="$pageSession{pageName}">
 <!beforeCreate
 getRequestValue(key="name" value=>$page{pageName});
 />
 </sun:staticText>
 </sun:property>
 </sun:propertySheetSection>
</sun:propertySheet>
<sun:hidden id="helpkey" value="" />

</sun:form>
</define>
</composition>

The page uses the composition directive to specify that the page uses the
default.layout template and to specify a page title. The page uses additional
directives, events, and tags to specify its content.

Adding Internationalization Support
To add internationalization support for your add-on component to the Administration
Console, you can place an event and handler like the following at the top of your page:

<!initPage
 setResourceBundle(key="yourI18NKey" bundle="bundle.package.BundleName")
/>

Replace the values yourI18NKey and bundle.package.BundleName with appropriate
values for your component.

Changing the Theme or Brand of the Administration Console
To change the theme or brand of the Administration Console for your add-on
component, use the integration point type org.glassfish.admingui:customtheme.
This integration point affects the Cascading Style Sheet (CSS) files and images that are
used in the Administration Console.

Changing the Theme or Brand of the Administration Console

3-14 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

Example 3–14 Example Custom Theme Integration Point

For example, the following integration point specifies a custom theme:

 <integration-point
 id="myownbrand"
 type="org.glassfish.admingui:customtheme"
 priority="2"
 content="myOwnBrand.properties"
 />

The priority attribute works differently when you specify it in a branding integration
point from the way it works in other integration points. You can place multiple
branding add-on components in the modules directory, but only one theme can be
applied to the Administration Console. The priority attribute determines which
theme is used. Specify a value from 1 to 100; the lower the number, the higher the
priority. The integration point with the highest priority will be used.

Additional integration point types also affect the theme or brand of the Administration
Console:

org.glassfish.admingui:masthead
Specifies the name and location of the include masthead file, which can be customized
with a branding image. This include file will be integrated on the masthead of the
Administration Console.

org.glassfish.admingui:loginimage
Specifies the name and location of the include file containing the branding login image
code that will be integrated with the login page of the Administration Console.

org.glassfish.admingui:loginform
Specifies the name and location of the include file containing the customized login
form code. This code also contains the login background image used for the login page
for the Administration Console.

org.glassfish.admingui:versioninfo
Specifies the name and location of the include file containing the branding image that
will be integrated with the content of the version popup window.

Example 3–15 Example of Branding Integration Points

For example, you might specify the following integration points. The content for each
integration point is defined in an include file.

 <integration-point
 id="myownbrandmast"
 type="org.glassfish.admingui:masthead"
 priority="80"
 content="branding/masthead.inc"
 />
 <integration-point
 id="myownbrandlogimg"
 type="org.glassfish.admingui:loginimage"
 priority="80"
 content="branding/loginimage.inc"
 />
 <integration-point
 id="myownbrandlogfm"
 type="org.glassfish.admingui:loginform"
 priority="80"
 content="branding/loginform.inc"

Creating an Integration Point Type

Extending the Administration Console 3-15

 />
 <integration-point
 id="myownbrandversinf"
 type="org.glassfish.admingui:versioninfo"
 priority="80"
 content="branding/versioninfo.inc"
 />

To provide your own CSS and images to modify the global look and feel of the entire
application (not just the Administration Console), use the theming feature of Project
Woodstock (http://java.net/projects/woodstock/). Create a theme JAR file
with all the CSS properties and image files that are required by your Woodstock
component. Use a script provided by the Woodstock project to clone an existing theme,
then modify the files and properties as necessary. Once you have created the theme
JAR file, place it in the WEB-INF/lib directory of the Administration Console so that
the Woodstock theme component will load the theme. In addition, edit the properties
file specified by your integration point (MyOwnBrand.properties, for example) to
specify the name and version of your theme.

Creating an Integration Point Type
If your add-on component provides new content that you would like other people to
extend, you may define your own integration point types. For example, if you add a
new page that provides tabs of monitoring information, you might want to allow
others to add their own tabs to complement your default tabs. This feature enables
your page to behave like the existing Administration Console pages that you or others
can extend.

To Create an Integration Point Type
1. Decide on the name of your integration point type.

The integration point type must be a unique identifier. You might use the package
name of your integration point, with a meaningful name appended to the end, as
in the following example:

org.company.project:myMonitoringTabs

2. After you have an integration point ID, use handlers to insert the integration point
implementation(s).

Include code like the following below the place in your JavaServer Faces page
where you would like to enable others to add their integration point
implementations:

<event>
 <!afterCreate
 getUIComponent(clientid="clientid:of:root"
 component=>$attribute{rootComp});
 includeIntegrations(type="org.company.project:myMonitoringTabs"
 root="#{rootComp}");
 />
</event>

Change clientId:of:root to match the clientId of the outermost component in
which you want others to be able to add their content (in this example, the tab set
is the most likely choice). Also include your integration point ID in place of
org.company.project:myMonitoringTabs. If you omit the root argument to

Creating an Integration Point Type

3-16 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

includeIntegrations, all components on the entire page can be used for the
parentId of the integration points.

3. To enable others to use this integration point, document it at the GlassFish
Integration Point wiki page
(https://wikis.oracle.com/display/GlassFish/V3IntegrationPoin
t).

Document the integration point only if your content is publicly available.

You or others can now provide an integration point that will be integrated into this
page.

4

Extending the asadmin Utility 4-1

4Extending the asadmin Utility

The asadmin utility is a command-line tool for configuring and administering
GlassFish Server. Extending the asadmin utility enables you to provide administrative
interfaces for an add-on component that are consistent with the interfaces of other
GlassFish Server components. A user can run asadmin subcommands either from a
command prompt or from a script. For more information about the asadmin utility, see
the asadmin(1M) man page.

The following topics are addressed here:

■ About the Administrative Command Infrastructure of GlassFish Server

■ Adding an asadmin Subcommand

■ Adding Parameters to an asadmin Subcommand

■ Making asadmin Subcommands Cluster-Aware

■ Adding Message Text Strings to an asadmin Subcommand

■ Enabling an asadmin Subcommand to Run

■ Setting the Context of an asadmin Subcommand

■ Changing the Brand in the GlassFish Server CLI

■ Examples of Extending the asadmin Utility

■ Implementing Create, Delete, and List Commands Using Annotations

About the Administrative Command Infrastructure of GlassFish Server
To enable multiple containers to be independently packaged and loaded, the
administrative command infrastructure of GlassFish Server provides the following
features:

■ Location independence. Administration subcommands can be loaded from any
add-on component that is known to GlassFish Server.

■ Extensibility. Administrative subcommands that are available to GlassFish Server
are discovered on demand and not obtained from a preset list of subcommands.

■ Support for the HK2 architecture. Subcommands can use injection to express their
dependencies, and extraction to provide results to a user. For more information,
see Writing HK2 Components.

Adding an asadmin Subcommand

4-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

Adding an asadmin Subcommand
An asadmin subcommand identifies the operation or task that a user is to perform.
Adding an asadmin subcommand enables the user to perform these tasks and
operations through the asadmin utility.

The following topics are addressed here:

■ Representing an asadmin Subcommand as a Java Class

■ Specifying the Name of an asadmin Subcommand

■ Ensuring That an AdminCommand Implementation Is Stateless

■ Example of Adding an asadmin Subcommand

Representing an asadmin Subcommand as a Java Class
Each asadmin subcommand that you are adding must be represented as a Java class.
To represent an asadmin subcommand as a Java class, write a Java class that
implements the org.glassfish.api.admin.AdminCommand interface. Write one class for
each subcommand that you are adding. Do not represent multiple asadmin
subcommands in a single class.

Annotate the declaration of your implementations of the AdminCommand interface with
the org.jvnet.hk2.annotations.Service annotation. The @Service annotation
ensures that the following requirements for your implementations are met:

■ The implementations are eligible for resource injection and resource extraction.

■ The implementations are location independent, provided that the component that
contains them is made known to the GlassFish Server runtime.

For information about how to make a component known to the GlassFish Server
runtime, see Integrating an Add-On Component With GlassFish Server.

Specifying the Name of an asadmin Subcommand
To specify the name of the subcommand, set the name element of the @Service
annotation to the name.

Subcommands that are supplied in GlassFish Server distributions typically create,
delete, and list objects of a particular type. For consistency with the names of
subcommands that are supplied in GlassFish Server distributions, follow these
conventions when specifying the name of a subcommand:

■ For subcommands that create an object of a particular type, use the name
create-object.

■ For subcommands that delete an object of a particular type, use the name
delete-object.

■ For subcommands that list all objects of a particular type, use the name
list-objects.

For example, GlassFish Server provides the following subcommands for creating,
deleting, and listing HTTP listeners:

■ create-http-listener

Note: Subcommand names are case-sensitive.

Adding Parameters to an asadmin Subcommand

Extending the asadmin Utility 4-3

■ delete-http-listener

■ list-http-listeners

You must also ensure that the name of your subcommand is unique. To obtain a
complete list of the names of all asadmin subcommands that are installed, use the
list-commands subcommand. For a complete list of asadmin subcommands that are
supplied in GlassFish Server distributions, see the GlassFish Server Open Source Edition
Reference Manual.

Ensuring That an AdminCommand Implementation Is Stateless
To enable multiple clients to run a subcommand simultaneously, ensure that the
implementation of the AdminCommand interface for the subcommand is stateless. To
ensure that the implementation of the AdminCommand interface is stateless, annotate the
declaration of your implementation with the org.jvnet.hk2.annotations.Scoped
annotation. In the @Scoped annotation, set the scope as follows:

■ To instantiate the subcommand for each lookup, set the scope to PerLookup.class.

■ To instantiate the subcommand only once for each session, set the scope to
Singleton.

Example of Adding an asadmin Subcommand

Example 4–1 Adding an asadmin Subcommand

This example shows the declaration of the class CreateMycontainer that represents an
asadmin subcommand that is named create-mycontainer. The subcommand is
instantiated for each lookup.

package com.example.mycontainer;

import org.glassfish.api.admin.AdminCommand;
...
import org.jvnet.hk2.annotations.Service;
...
import org.jvnet.hk2.annotations.Scoped;
import org.jvnet.hk2.component.PerLookup;

/**
 * Sample subcommand
 */
@Service(name="create-mycontainer")
@Scoped(PerLookup.class)
public Class CreateMycontainer implements AdminCommand {
…
}

Adding Parameters to an asadmin Subcommand
The parameters of an asadmin subcommand are the options and operands of the
subcommand.

■ Options control how the asadmin utility performs a subcommand.

■ Operands are the objects on which a subcommand acts. For example, the operand
of the start-domain subcommand is the domain that is to be started.

Adding Parameters to an asadmin Subcommand

4-4 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

The following topics are addressed here:

■ Representing a Parameter of an asadmin Subcommand

■ Identifying a Parameter of an asadmin Subcommand

■ Specifying Whether a Parameter Is an Option or an Operand

■ Specifying the Name of an Option

■ Specifying the Acceptable Values of a Parameter

■ Specifying the Default Value of a Parameter

■ Specifying Whether a Parameter Is Required or Optional

■ Example of Adding Parameters to an asadmin Subcommand

Representing a Parameter of an asadmin Subcommand
Represent each parameter of a subcommand in your implementation as a field or as
the property of a JavaBeans specification setter method. Use the property of a setter
method for the following reasons:

■ To provide data encapsulation for the parameter

■ To add code for validating the parameter before the property is set

Identifying a Parameter of an asadmin Subcommand
Identifying a parameter of an asadmin subcommand enables GlassFish Server to
perform the following operations at runtime on the parameter:

■ Validation. The GlassFish Server determines whether all required parameters are
specified and returns an error if any required parameter is omitted.

■ Injection. Before the subcommand runs, the GlassFish Server injects each
parameter into the required field or method before the subcommand is run.

■ Usage message generation. The GlassFish Server uses reflection to obtain the list
of parameters for a subcommand and to generate the usage message from this list.

■ Localized string display. If the subcommand supports internationalization and if
localized strings are available, the GlassFish Server can automatically obtain the
localized strings for a subcommand and display them to the user.

To identify a parameter of a subcommand, annotate the declaration of the item that is
associated with the parameter with the org.glassfish.api.Param annotation. This
item is either the field or setter method that is associated with the parameter.

To specify the properties of the parameter, use the elements of the @Param annotation
as explained in the sections that follow.

Specifying Whether a Parameter Is an Option or an Operand
Whether a parameter is an option or an operand determines how a user must specify
the parameter when running the subcommand:

■ If the parameter is an option, the user must specify the option with the parameter
name.

■ If the parameter is an operand, the user may omit the parameter name.

To specify whether a parameter is an option or an operand, set the primary element of
the @Param annotation as follows:

Adding Parameters to an asadmin Subcommand

Extending the asadmin Utility 4-5

■ If the parameter is an option, set the primary element to false. This value is the
default.

■ If the parameter is an operand, set the primary element to true.

Specifying the Name of an Option
The name of an option is the name that a user must type on the command line to
specify the option when running the subcommand.

The name of each option that you add in your implementation of an asadmin
subcommand can have a long form and a short form. When running the subcommand,
the user specifies the long form and the short form as follows:

■ The short form of an option name has a single dash (-) followed by a single
character.

■ The long form of an option name has two dashes (--) followed by an option word.

For example, the short form and the long form of the name of the option for specifying
terse output are as follows:

■ Short form: -m

■ Long form: --monitor

Specifying the Long Form of an Option Name
To specify the long form of an option name, set the name element of the @Param
annotation to a string that specifies the name. If you do not set this element, the
default name depends on how you represent the option.

■ If you represent the option as a field, the default name is the field name.

■ If you represent the option as the property of a JavaBeans specification setter
method, the default name is the property name from the setter method name. For
example, if the setter method setPassword is associated with an option, the
property name and the option name are both password.

Specifying the Short Form of an Option Name
To specify the short form of an option name, set the shortName element of the @Param
annotation to a single character that specifies the short form of the parameter. The user
can specify this character instead of the full parameter name, for example -m instead of
--monitor. If you do not set this element, the option has no short form.

Specifying the Acceptable Values of a Parameter
When a user runs the subcommand, the GlassFish Server validates option arguments
and operands against the acceptable values that you specify in your implementation.

To specify the acceptable values of a parameter, set the acceptableValues element of
the @Param annotation to a string that contains a comma-separated list of acceptable
values. If you do not set this element, any string of characters is acceptable.

Note: Option names are case-sensitive.

Adding Parameters to an asadmin Subcommand

4-6 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

Specifying the Default Value of a Parameter
The default value of a parameter is the value that is applied if a user omits the
parameter when running the subcommand.

To specify the default value of a parameter, set the defaultValue element of the
@Param annotation to a string that contains the default value. If you do not set this
element, the parameter has no default value.

Specifying Whether a Parameter Is Required or Optional
Whether a parameter is required or optional determines how a subcommand responds
if a user omits the parameter when running the subcommand:

■ If the parameter is required, the subcommand returns an error.

■ If the parameter is optional, the subcommand runs successfully.

To specify whether a parameter is optional or required, set the optional element of the
@Param annotation as follows:

■ If the parameter is required, set the optional element to false. This value is the
default.

■ If the parameter is optional, set the optional element to true.

Example of Adding Parameters to an asadmin Subcommand

Example 4–2 Adding Parameters to an asadmin Subcommand

This example shows the code for adding parameters to an asadmin subcommand with
the properties as shown in the table.

...
import org.glassfish.api.Param;
...
{
…
 @Param
 String originator;

 @Param(name="description", optional=true)

Name Represented As
Acceptable
Values

Default
Value

Optional
or
Required

Short
Name

Option or
Operand

--originator A field that is
named
originator

Any
character
string

None
defined

Required None Option

--description A field that is
named
mycontainerDesc
ription

Any
character
string

None
defined

Optional None Option

--enabled A field that is
named enabled

true or
false

false Optional None Option

--containername A field that is
named
containername

Any
character
string

None
defined

Required None Operand

Making asadmin Subcommands Cluster-Aware

Extending the asadmin Utility 4-7

 …
 String mycontainerDescription

 @Param (acceptableValues="true,false", defaultValue="false", optional=true)
 String enabled

 @Param(primary=true)
 String containername;
…
}

Making asadmin Subcommands Cluster-Aware
The GlassFish Server asadmin command framework provides support for making
asadmin subcommands work properly in a clustered environment or with standalone
server instances. A command that changes a configuration is first executed on the
domain administration server (DAS) and then executed on each of the server instances
affected by the change. Annotations provided by the framework determine the
instances on which the command should be replicated and executed. Commands that
do not change a configuration need not be executed on the DAS at all, but only on the
necessary instances. The framework provides support for collecting the output from
the instances and sending a report back to the user.

Subcommands in a multi-instance environment can accept a --target option to
specify the cluster or instance on which the command acts. From within the command,
the Target utility allows the command to determine information about where it is
running. For some commands, it may be desirable to have a main command that runs
on the DAS and supplemental preprocessing or postprocessing commands that run on
the instances.

The following topics are addressed here:

■ Specifying Allowed Targets

■ The Target Utility

■ Specifying asadmin Subcommand Execution

■ Subcommand Preprocessing and Postprocessing

■ Running a Command from Another Command

Specifying Allowed Targets
When you define a --target option by using the @Param annotation in the
org.glassfish.api package, possible targets are as follows:

■ domain — The entire domain

■ server — The domain administration server, or DAS

■ cluster — A homogeneous set of server instances that function as a unit

■ standalone instance — A server instance that isn't part of a cluster

■ clustered instance — A server instance that is part of a cluster

■ config — A configuration for a cluster or standalone server instance

These possible targets are represented by the following CommandTarget elements of the
@TargetType annotation in the org.glassfish.config.support package:

Making asadmin Subcommands Cluster-Aware

4-8 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

■ CommandTarget.DOMAIN

■ CommandTarget.DAS

■ CommandTarget.CLUSTER

■ CommandTarget.STANDALONE_SERVER

■ CommandTarget.CLUSTERED_INSTANCE

■ CommandTarget.CONFIG

By default, the allowed targets are server (the DAS), standalone server instances,
clusters, and configurations. Not specifying a @TargetType annotation is equivalent to
specifying the following @TargetType annotation:

@TargetType(CommandTarget.DAS,CommandTarget.STANDALONE_
SERVER,CommandTarget.CLUSTER,CommandTarget.CONFIG)

Subcommands that support other combinations of targets must specify @TargetType
annotations. For example, the create-http-lb subcommand supports only standalone
server instance and cluster targets. Its @TargetType annotation is as follows:

@TargetType(CommandTarget.STANDALONE_SERVER,CommandTarget.CLUSTER)

Most subcommands do not act on server instances that are part of a cluster. This
ensures that all server instances in a cluster remain synchronized. Thus, the
CommandTarget.CLUSTERED_INSTANCE element of the @TargetType annotation is rarely
used.

An example exception is the enable subcommand. To perform a rolling upgrade of an
application deployed to a cluster, you must be able to enable the new application
(which automatically disables the old) on one clustered instance at a time. The
@TargetType annotation for the enable subcommand is as follows, all on one line:

@TargetType(CommandTarget.DAS,CommandTarget.STANDALONE_
INSTANCE,CommandTarget.CLUSTER,
CommandTarget.CLUSTERED_INSTANCE)

Note that the CommandTarget.CLUSTERED_INSTANCE element is specified.

The target name specified in the command line is injected into the subcommand
implementation if the following annotation is present:

@Param(optional=true,defaultValue=SystemPropertyConstants.DEFAULT_SERVER_INSTANCE_
NAME)
 String target;

The Target Utility
The Target utility is a service, present in the internal-api module,
org.glassfish.internal.api package, which a command implementation can obtain
by using the following annotation:

@Inject Target targetUtil;

You can use this utility to avoid writing boiler plate code for actions such as getting
the list of server instances for a cluster or checking if a server instance is part of a
cluster. For example, here is an example of using the utility to obtain the configuration
for a target cluster or server instance:

Config c = targetUtil.getConfig(target);

Making asadmin Subcommands Cluster-Aware

Extending the asadmin Utility 4-9

The Target utility is packaged in the as-install/modules/internal-api.jar file. Its
methods are documented with comments.

Specifying asadmin Subcommand Execution
By default, all asadmin subcommands are automatically replicated and run on the DAS
and all GlassFish Server instances specified in the --target option. To run a
subcommand only on the DAS, use the following @ExecuteOn annotation in the
org.glassfish.api.admin package:

@ExecuteOn(RuntimeType.DAS)

The stop-domain subcommand and subcommands that list information are examples
of subcommands that execute only on the DAS.

To run a subcommand only on applicable server instances, use the following
@ExecuteOn annotation:

@ExecuteOn(RuntimeType.INSTANCE)

Not specifying an @ExecuteOn annotation is equivalent to specifying the following
@ExecuteOn annotation:

@ExecuteOn(RuntimeType.DAS,RuntimeType.INSTANCE)

In addition to RuntimeType, you can specify the following additional elements with the
@ExecuteOn annotation:

■ ifFailure — By default, if errors occur during execution of a subcommand on a
server instance, command execution is considered to have failed and further
execution is stopped. However, you can choose to ignore the failure or warn the
user rather than stopping further command execution. Specify the ifFailure
element and set it to FailurePolicy.Ignore or FailurePolicy.Warn. For example:

@ExecuteOn(value={RuntimeType.DAS}, ifFailure=FailurePolicy.Warn)

■ ifOffline — By default, if a server instance is found to be offline during the
command replication process, command execution is considered to have failed
and further execution is stopped. However, you can choose to ignore the failure or
warn the user rather than stopping further command execution. Specify the
ifOffline element and set it to FailurePolicy.Ignore or FailurePolicy.Warn.
For example:

@ExecuteOn(value={RuntimeType.DAS}, ifOffline=FailurePolicy.Ignore)

Subcommand Preprocessing and Postprocessing
Some asadmin subcommands may require preprocessing or postprocessing. For
example, after an application is deployed to the DAS, references are created in all
applicable server instances, which synchronize with the DAS. As another example,
Message Queue or load balancer settings may have to be reconfigured whenever a
server instance is added to a cluster.

For such cases, the command replication framework provides the @Supplemental
annotation (in the org.glassfish.api.admin package). An implementation must use
the value element of the @Supplemental annotation to express the supplemented
command. This value is the name of the command as defined by the supplemented
command's @Service annotation (in the org.jvnet.hk2.annotations package).

Making asadmin Subcommands Cluster-Aware

4-10 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

For example, the deploy subcommand requires postprocessing. The deployment
command implementation looks like this:

@Service(name="deploy")
@ExecuteOn(RuntimeType.DAS)
public DeployCommand implements AdminCommand {
//Do Actual Deployment
}

A supplemental command that is run after every successful deployment looks like
this:

@Service(name="DeploymentSupplementalCommand")
@Supplemental("deploy")
@ExecuteOn(RuntimeType.INSTANCE)
public DeploymentSupplementalCommand implements AdminCommand {
//Do logic that happens after deployment has been done
}

As another example, a subcommand to create a local server instance might look like
this:

@Service(name = "create-local-instance")
@Scoped(PerLookup.class)
public final class CreateLocalInstanceCommand implements AdminCommand {
//Do local instance creation
}

A supplemental command to change Message Queue or load balancer settings after
local instance creation might look like this:

@Service(name="CreateLocalInstanceSupplementalCommand")
@Supplemental("create-local-instance")
public CreateLocalInstanceSupplementalCommand implements AdminCommand {
//Change MQ/LB properties here
}

A supplemental command implements AdminCommand, thus it can use the @Param
annotation and expect the corresponding asadmin command parameters to be injected
at runtime. The parameter values available for injection are the same ones provided for
the original command with which the supplemental command is associated. For
example, the DeploymentSupplementalCommand has access to the parameter values
available to the DeployCommand invocation.

An asadmin subcommand can be supplemented with multiple supplemental
commands. In this case, all supplemental commands are run after completion of the
main command but without any guarantee of the order in which they run.

To specify that a supplemental command is run before the main command, set the on
element of the @Supplemental annotation to Supplemental.Timing.Before. For
example:

@Supplemental(value="mycommand", on=Supplemental.Timing.Before)

Supplemental commands can use the @ExecuteOn annotation as described in
Specifying asadmin Subcommand Execution.

Running a Command from Another Command
An asadmin subcommand or supplemental command might need to run another
subcommand. For example, a subcommand running on the DAS might need to run a

Adding Message Text Strings to an asadmin Subcommand

Extending the asadmin Utility 4-11

different subcommand on one or more server instances. Such invocations might use
the ClusterExecutor class (in the org.glassfish.api.admin package), which accepts
a ParameterMap, to pass parameters and their values to the invoked command.

The ParameterMapExtractor utility is a service, present in the common-util module,
org.glassfish.common.util.admin package, which creates a new ParameterMap
populated using the parameters and values of another AdminCommand that has already
been injected.

To list parameter names you want excluded from the ParameterMap, pass the
following:

Set<String>

This is optional.

Adding Message Text Strings to an asadmin Subcommand
A message text string provides useful information to the user about an asadmin
subcommand or a parameter.

To provide internationalization support for the text string of a subcommand or
parameter, annotate the declaration of the subcommand or parameter with the
org.glassfish.api.I18n annotation. The @I18n annotation identifies the resource
from the resource bundle that is associated with your implementation.

To add message text strings to an asadmin subcommand, create a plain text file that is
named LocalStrings.properties to contain the strings. Define each string on a
separate line of the file as follows:

key=string

key
A key that maps the string to a subcommand or a parameter. The format to use for key
depends on the target to which the key applies and whether the target is annotated
with the @I18n annotation. See the following table.

The replaceable parts of these formats are as follows:

subcommand-name
The name of the subcommand.

resource-name
The name of the resource that is specified in the@I18n annotation.

param-name
The name of the parameter.

Target Format

Subcommand or parameter with
the @I18n annotation

subcommand-name.command.resource-name

Subcommand without the @I18n
annotation

subcommand-name.command

Parameter without the @I18n
annotation

subcommand-name.command.param-name

Adding Message Text Strings to an asadmin Subcommand

4-12 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

string
A string without quotes that contains the text of the message.

Example 4–3 Adding Message Strings to an asadmin Subcommand

This example shows the code for adding message strings to the create-mycontainer
subcommand as follows:

■ The create-mycontainer subcommand is associated with the message Creates a
custom container. No internationalization support is provided for this message.

■ The --originator parameter is associated with the message The originator of
the container. No internationalization support is provided for this message.

■ The --description parameter is associated with the message that is contained in
the resource mydesc, for which internationalization is provided. This resource
contains the message text A description of the container.

■ The --enabled parameter is associated with the message Whether the container
is enabled or disabled. No internationalization support is provided for this
message.

■ The --containername parameter is associated with the message The container
name. No internationalization support is provided for this message.

The addition of the parameters originator, description, enabled and containername
to the subcommand is shown in Example 4–2.

package com.example.mycontainer;

import org.glassfish.api.admin.AdminCommand;
...
import org.glassfish.api.I18n;
import org.glassfish.api.Param;
import org.jvnet.hk2.annotations.Service;
...
import org.jvnet.hk2.annotations.Scoped;
import org.jvnet.hk2.component.PerLookup;

/**
 * Sample subcommand
 */
@Service(name="create-mycontainer")
@Scoped(PerLookup.class)
public Class CreateMycontainer implements AdminCommand {

 …

 @Param
 String originator;

 @Param(name="description", optional=true)
 @I18n("mydesc")
 String mycontainerDescription

 @Param (acceptableValues="true,false", defaultValue="false", optional=true)

Note: To display the message strings to users, you must provide
code in your implementation of the execute method to display the
text. For more information about implementing the execute
method, see Enabling an asadmin Subcommand to Run.

Changing the Brand in the GlassFish Server CLI

Extending the asadmin Utility 4-13

 String enabled

 @Param(primary=true)
 String containername;
 …

}

The following message text strings are defined in the file LocalStrings.properties
for use by the subcommand:

create-mycontainer.command=Creates a custom container
create-mycontainer.command.originator=The originator of the container
create-mycontainer.command.mydesc=A description of the container
create-mycontainer.command.enabled=Whether the container is enabled or disabled
create-mycontainer.command.containername=The container name

Enabling an asadmin Subcommand to Run
To enable an asadmin subcommand to run, implement the execute method in your
implementation of the AdminCommand interface. The declaration of the execute method
in your implementation must be as follows.

 public void execute(AdminCommandContext context);

Pass each parameter of the subcommand as a property to your implementation of the
execute method. Set the key of the property to the parameter name and set the value
of the property to the parameter's value.

In the body of the execute method, provide the code for performing the operation that
the command was designed to perform. For examples, see Example 4–6 and
Example 4–7.

Setting the Context of an asadmin Subcommand
The org.glassfish.api.admin.AdminCommandContext class provides the following
services to an asadmin subcommand:

■ Access to the parameters of the subcommand

■ Logging

■ Reporting

To set the context of an asadmin subcommand, pass an AdminCommandContext object to
the execute method of your implementation.

Changing the Brand in the GlassFish Server CLI
The brand in the GlassFish Server command-line interface (CLI) consists of the
product name and release information that are displayed in the following locations:

■ In the string that the version subcommand displays

■ In each entry in the server.log file

If you are incorporating GlassFish Server into a new product with an external vendor's
own brand name, change the brand in the GlassFish Server CLI.

Changing the Brand in the GlassFish Server CLI

4-14 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

To change the brand in the GlassFish Server CLI, create an OSGi fragment bundle that
contains a plain text file that is named
src/main/resources/BrandingVersion.properties.

In the BrandingVersion.properties file, define the following keyword-value pairs:

product_name=product-name
abbrev_product_name=abbrev-product-name
major_version=major-version
minor_version=minor-version
build_id=build-id
version_prefix=version-prefix
version_suffix=version-suffix

Define each keyword-value pair on a separate line of the file. Each value is a text string
without quotes.

The meaning of each keyword-value pair is as follows:

product_name=product-name
Specifies the full product name without any release information, for example,
name="ProductNameFullPlain" content="Oracle GlassFish Server".

abbrev_product_name=abbrev-product-name
Specifies an abbreviated form of the product name without any release information,
for example, name="ProductNamePlain" content="GlassFish Server".

major_version=major-version
Returns the product major version, for example, 3

minor_version=minor-version
Specifies the product minor version, for example, 0.

build_id=build-id
Specifies the build version, for example, build 17.

version_prefix=version-prefix
Specifies a prefix for the product version, for example, v.

version_suffix=version-suffix
Specifies a suffix for the product version, for example, Beta.

Example 4–4 BrandingVersion.properties File for Changing the Brand in the GlassFish
Server CLI

This example shows the content of the BrandingVersion.properties for defining the
product name and release information of Oracle GlassFish Server 3.0.1, build 17. The
abbreviated product name is glassfish-server.

product_name=Oracle GlassFish Server
abbrev_product_name=glassfish-server
major_version=3
minor_version=0.1
build_id=build 17

Examples of Extending the asadmin Utility

Extending the asadmin Utility 4-15

Examples of Extending the asadmin Utility

Example 4–5 asadmin Subcommand With Empty execute Method

This example shows a class that represents the asadmin subcommand
create-mycontainer.

The usage statement for this subcommand is as follows:

asadmin create-mycontainer --originator any-character-string
[--description any-character-string]
[--enabled {true|false}] any-character-string

This subcommand uses injection to specify that a running domain is required.

package com.example.mycontainer;

import org.glassfish.api.admin.AdminCommand;
import org.glassfish.api.admin.AdminCommandContext;
import org.glassfish.api.I18n;
import org.glassfish.api.Param;
import org.jvnet.hk2.annotations.Service;
import org.jvnet.hk2.annotations.Inject;
import org.jvnet.hk2.annotations.Scoped;
import org.jvnet.hk2.component.PerLookup;

/**
 * Sample subcommand
 */
@Service(name="create-mycontainer")
@Scoped(PerLookup.class)
public Class CreateMycontainer implements AdminCommand {

 @Inject
 Domain domain;

 @Param
 String originator;

 @Param(name="description", optional=true)
 @I18n("mydesc")
 String mycontainerDescription

 @Param (acceptableValues="true,false", defaultValue="false", optional=true)
 String enabled

 @Param(primary=true)
 String containername;

 /**
 * Executes the subcommand with the subcommand parameters passed as Properties
 * where the keys are the paramter names and the values the parameter values
 * @param context information
 */
 public void execute(AdminCommandContext context) {
 // domain and originator are not null
 // mycontainerDescription can be null.
 }
}

Examples of Extending the asadmin Utility

4-16 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

The following message text strings are defined in the file LocalStrings.properties
for use by the subcommand:

create-mycontainer.command=Creates a custom container
create-mycontainer.command.originator=The originator of the container
create-mycontainer.command.mydesc=A description of the container
create-mycontainer.command.enabled=Whether the container is enabled or disabled
create-mycontainer.command.containername=The container name

Example 4–6 asadmin Subcommand for Retrieving and Displaying Information

This example shows a class that represents the asadmin subcommand
list-runtime-environment. The subcommand determines the operating system or
runtime information for GlassFish Server.

The usage statement for this subcommand is as follows:

asadmin list-runtime-environment{runtime|os}

package com.example.env.cli;

import org.glassfish.api.admin.AdminCommand;
import org.glassfish.api.admin.AdminCommandContext;
import org.glassfish.api.ActionReport;
import org.glassfish.api.I18n;
import org.glassfish.api.ActionReport.ExitCode;
import org.glassfish.api.Param;
import org.jvnet.hk2.annotations.Service;
import org.jvnet.hk2.annotations.Inject;
import org.jvnet.hk2.annotations.Scoped;
import org.jvnet.hk2.component.PerLookup;

import java.lang.management.ManagementFactory;
import java.lang.management.OperatingSystemMXBean;
import java.lang.management.RuntimeMXBean;

/**
 * Demos asadmin CLI extension
 *
 */
@Service(name="list-runtime-environment")
@Scoped(PerLookup.class)
public class ListRuntimeEnvironmentCommand implements AdminCommand {

 // this value can be either runtime or os for our demo
 @Param(primary=true)
 String inParam;

 public void execute(AdminCommandContext context) {

 ActionReport report = context.getActionReport();
 report.setActionExitCode(ExitCode.SUCCESS);

 // If the inParam is 'os' then this subcommand returns operating system
 // info and if the inParam is 'runtime' then it returns runtime info.
 // Both of the above are based on mxbeans.

 if ("os".equals(inParam)) {
 OperatingSystemMXBean osmb =
ManagementFactory.getOperatingSystemMXBean();

Examples of Extending the asadmin Utility

Extending the asadmin Utility 4-17

 report.setMessage("Your machine operating system name = " +
osmb.getName());
 } else if ("runtime".equals(inParam)) {
 RuntimeMXBean rtmb = ManagementFactory.getRuntimeMXBean();
 report.setMessage("Your JVM name = " + rtmb.getVmName());
 } else {
 report.setActionExitCode(ExitCode.FAILURE);
 report.setMessage("operand should be either 'os' or 'runtime'");
 }

 }
}

Example 4–7 asadmin Subcommand for Updating Configuration Data

This example shows a class that represents the asadmin subcommand
configure-greeter-container. The subcommand performs a transaction to update
configuration data for a container component. For more information about such
transactions, see Creating a Transaction to Update Configuration Data.

The usage statement for this subcommand is as follows:

asadmin configure-greeter-container --instances instances [--language language]
[--style style]

The acceptable values and default value of each option of the subcommand are shown
in the following table. The table also indicates whether each option is optional or
required.

Code for the container component is shown in Example of Adding Container
Capabilities.

Code that defines the configuration data for the container component is shown in
Examples of Adding Configuration Data for a Component.

package org.glassfish.examples.extension.greeter.config;

import org.glassfish.api.admin.AdminCommand;
import org.glassfish.api.admin.AdminCommandContext;
import org.glassfish.api.Param;
import org.jvnet.hk2.annotations.Service;
import org.jvnet.hk2.annotations.Inject;
import org.jvnet.hk2.config.Transactions;
import org.jvnet.hk2.config.ConfigSupport;
import org.jvnet.hk2.config.SingleConfigCode;
import org.jvnet.hk2.config.TransactionFailure;

import java.beans.PropertyVetoException;

@Service(name = "configure-greeter-container")

Option Acceptable Values Default value Optional or Required

--instances An integer in the
range 1-10

5 Required

--language english, norsk, or
francais

norsk Optional

--style formal, casual, or
expansive

formal Optional

Implementing Create, Delete, and List Commands Using Annotations

4-18 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

public class ConfigureGreeterContainerCommand implements AdminCommand {

 @Param(acceptableValues = "1,2,3,4,5,6,7,8,9,10", defaultValue = "5")
 String instances;
 @Param(acceptableValues = "english,norsk,francais", defaultValue = "norsk",
 optional = true)
 String language;
 @Param(acceptableValues = "formal,casual,expansive", defaultValue = "formal",
 optional = true)
 String style;
 @Inject
 GreeterContainerConfig config;

 public void execute(AdminCommandContext adminCommandContext) {
 try {
 ConfigSupport.apply(new SingleConfigCode<GreeterContainerConfig>() {

 public Object run(GreeterContainerConfig greeterContainerConfig)
 throws PropertyVetoException, TransactionFailure {
 greeterContainerConfig.setNumberOfInstances(instances);
 greeterContainerConfig.setLanguage(language);
 greeterContainerConfig.setStyle(style);
 return null;
 }
 }, config);
 } catch (TransactionFailure e) {
 }

 }
}

Implementing Create, Delete, and List Commands Using Annotations
Many asadmin subcommands simply create, delete, or list objects in the configuration.
Such code is repetitive to write and error prone. To simplify the writing of these
asadmin commands, GlassFish Server supports annotations that can create, delete, and
list configuration objects from a command invocation. Unless attributes or properties
are set to non-default values or extra actions are required, no writing of code is
needed.

The following topics are addressed here:

■ Command Patterns

■ Resolvers

■ The @Create Annotation

■ The @Delete Annotation

■ The @Listing Annotation

■ Create Command Decorators

■ Delete Command Decorators

■ Specifying Command Execution

■ Using Multiple Command Annotations

Implementing Create, Delete, and List Commands Using Annotations

Extending the asadmin Utility 4-19

Command Patterns
Create command pattern. The most basic create commands are implemented in the
following pattern:

1. Retrieve the parent configuration object instance to which the child will be added.
For example, the parent could be a Clusters object and the child a Cluster object.

2. Start a transaction on the parent instance.

3. Create the child configuration object instance.

4. Set the attributes and properties of the newly created child instance.

5. Add the child to the parent using one of the following accessor methods:

void setChild(ChildType child)

Used when there can be zero or one children of a single type associated with one
parent instance.

List<ChildType> getChildren()

Used when there can be zero or more children of a single type associated with one
parent instance.

You cannot retrieve a set of children of the same type from the same parent using
two different accessor methods.

6. Commit the transaction.

A generic create command implementation can do most of these tasks if the following
information is provided:

■ A way to resolve the identity of the parent instance.

■ The type of the child instance.

■ A mapping between command options and child attributes.

■ The accessor method for adding the child to the parent.

Delete command pattern. The most basic delete commands are implemented in the
following pattern:

1. Retrieve the configuration object instance to be deleted.

2. Start a transaction on the parent instance.

3. Delete the child by removing it from the list or calling setXXX(null).

4. Commit the transaction.

A generic delete command implementation can do most of these tasks if the following
information is provided:

■ A way to resolve the identity of the child instance.

■ The accessor method for deleting the child.

List command pattern. The most basic list commands simply retrieve all configuration
object instances of a given type.

Resolvers
A resolver retrieves a configuration object instance of a particular type. For a create
command, it retrieves the parent of the object to be created. For a delete command, it
retrieves the object to be deleted. A resolver implements the CrudResolver interface:

Implementing Create, Delete, and List Commands Using Annotations

4-20 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

package org.glassfish.config.support;

/**
 * A config resolver is responsible for finding the target object of a specified
 * type on which a creation command invocation will be processed.
 *
 * Implementation of these interfaces can be injected with the command invocation
 * parameters in order to determine which object should be returned
 */
@Contract
public interface CrudResolver {

 /**
 * Retrieves the existing configuration object a command invocation is
 * intented to mutate.
 * @param context the command invocation context
 * @param type the type of the expected instance
 * @return the instance or null if not found
 */
 <T extends ConfigBeanProxy> T resolve(AdminCommandContext context, Class<T>
type);
}

Given an AdminCommandContext, plus injection with the asadmin command line
parameters (or any other HK2 services if necessary), the resolver should be able to
determine the particular configuration object on which to act.

The following resolvers are provided in the org.glassfish.config.support package:

■ TargetBasedResolver — Uses the --target option and the expected return type
to retrieve the configuration object instance.

■ TargetAndNameBasedResolver — Uses the --target option to look up a Config
object and a name to retrieve one of the Config object's children.

■ TypeAndNameResolver — Uses the requested type and asadmin command name
operand to find the configuration object instance. This is useful for a configuration
that uses the @Index annotation, which registers instances under names.

■ TypeResolver — Uses the requested type to find the configuration object instance.
This is the default resolver.

The @Create Annotation
By placing the org.glassfish.config.support.Create annotation on a method, you
provide the following information:

■ The value element of the @Create annotation is the name of the asadmin
subcommand that creates the configuration object.

■ The method's class is the type of the parent.

■ The method's return type or parameter type is the type of the child.

■ The method is the accessor method that adds a child of the specified type to the
parent.

The only additional information needed is the resolver to use.

The following example specifies a create-cluster subcommand:

@Configured
public interface Clusters extends ConfigBeanProxy, Injectable {

Implementing Create, Delete, and List Commands Using Annotations

Extending the asadmin Utility 4-21

 /**
 * Return the list of clusters currently configured
 *
 * @return list of {@link Cluster }
 */
 @Element
 @Create(value="create-cluster")
 public List<Cluster> getCluster();
}

Because there is only one instance of the parent type, Clusters, in the configuration,
this example uses the default resolver to retrieve it. Therefore, no resolver needs to be
specified.

The @Delete Annotation
By placing the org.glassfish.config.support.Delete annotation on a method, you
provide the following information:

■ The value element of the @Delete annotation is the name of the asadmin
subcommand that deletes the configuration object.

■ The method's class is the type of the parent.

■ The method's return type or parameter type is the type of the child.

■ The method is the accessor method that deletes a child of the specified type from
the parent.

The only additional information needed is the resolver to use.

The following example specifies a delete-cluster subcommand:

@Configured
public interface Clusters extends ConfigBeanProxy, Injectable {

 /**
 * Return the list of clusters currently configured
 *
 * @return list of {@link Cluster }
 */
 @Element
 @Delete(value="delete-cluster", resolver=TypeAndNameResolver.class)
 public List<Cluster> getCluster();
}

The TypeAndNameResolver uses the child type and the name operand passed through
the command line to retrieve the specific cluster instance to be deleted.

The @Listing Annotation
By placing the org.glassfish.config.support.Listing annotation on a method, you
provide the following information:

■ The value element of the @Listing annotation is the name of the asadmin
subcommand that lists the configuration objects.

■ The method's class is the type of the parent.

■ The method's return type is the type of the children to be listed.

■ The method is always the following accessor method:

Implementing Create, Delete, and List Commands Using Annotations

4-22 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

List<ChildType> getChildren()

The default resolver retrieves all of the children of the specified type. Therefore, no
resolver needs to be specified for a list command.

The following example specifies a list-clusters subcommand:

@Configured
public interface Clusters extends ConfigBeanProxy, Injectable {

 /**
 * Return the list of clusters currently configured
 *
 * @return list of {@link Cluster }
 */
 @Element
 @Listing(value="list-clusters")
 public List<Cluster> getCluster();
}

Create Command Decorators
Most create commands must do more than create a single configuration object instance
with default attribute values. For example, most create commands allow the user to
specify non-default attribute values through command options. For another example,
the create-cluster subcommand creates children of the Cluster object and copies a
referenced Config object. A creation decorator provides the code necessary to perform
such additional operations.

The interface that a creation decorator must implement is as follows:

@Scoped(PerLookup.class)
public interface CreationDecorator<T extends ConfigBeanProxy> {

 /**
 * The element instance has been created and added to the parent, it can be
 * customized. This method is called within a
 * {@link org.jvnet.hk2.config.Transaction}
 * and instance is therefore a writeable view on the configuration component.
 *
 * @param context administration command context
 * @param instance newly created configuration element
 * @throws TransactionFailure if the transaction should be rollbacked
 * @throws PropertyVetoException if one of the listener of <T> is throwing
 * a veto exception
 */
 public void decorate(AdminCommandContext context, T instance)
 throws TransactionFailure, PropertyVetoException;

 /**
 * Default implementation of a decorator that does nothing.
 */
 @Service
 public class NoDecoration implements CreationDecorator<ConfigBeanProxy> {
 @Override
 public void decorate(AdminCommandContext context, ConfigBeanProxy
instance)
 throws TransactionFailure, PropertyVetoException {
 // do nothing
 }

Implementing Create, Delete, and List Commands Using Annotations

Extending the asadmin Utility 4-23

 }
}

The CreationDecorator interface is in the org.glassfish.config.support package.

A @Create annotation specifies a creation decorator using a decorator element. For
example:

@Configured
public interface Clusters extends ConfigBeanProxy, Injectable {

 /**
 * Return the list of clusters currently configured
 *
 * @return list of {@link Cluster }
 */
 @Element
 @Create(value="create-cluster", decorator=Cluster.Decorator.class)
 public List<Cluster> getCluster();
}

The @Create annotation is on a method of the parent class. However, the referenced
creation decorator class is associated with the child class. For example:

@Configured
public interface Cluster extends ConfigBeanProxy, ... {

 ...

 @Service
 @Scoped(PerLookup.class)
 class Decorator implements CreationDecorator<Cluster> {

 @Param(name="config", optional=true)
 String configRef=null;

 @Inject
 Domain domain;

 @Override
 public void decorate(AdminCommandContext context, final Cluster instance)
 throws TransactionFailure, PropertyVetoException {

 ...

 }
 }
}

The decorator class can optionally be an inner class of the child class. You can inject
command options using the @Param annotation. You can also inject HK2 services or
configuration instances.

Delete Command Decorators
Some delete commands must do more than delete a single configuration object
instance. For example, the delete-cluster subcommand deletes the referenced
Config object if no other Cluster or Instance objects reference it. A deletion decorator
provides the code necessary to perform such additional operations.

The interface that a deletion decorator must implement is as follows:

Implementing Create, Delete, and List Commands Using Annotations

4-24 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

/**
 * A decorator for acting upon a configuration element deletion.
 *
 * @param <T> the deleted element parent type
 * @param <U> the deleted element
 */
@Scoped(PerLookup.class)
public interface DeletionDecorator<T extends ConfigBeanProxy,
 U extends ConfigBeanProxy> {

 /**
 * notification of a configuration element of type U deletion.
 *
 * Note that this notification is called within the boundaries of the
 * configuration transaction, therefore the parent instance is a
 * writable copy and further changes to the parent can be made without
 * enrolling it inside a transaction.
 *
 * @param context the command context to lead to the element deletion
 * @param parent the parent instance the element was removed from
 * @param child the deleted instance
 */
 public void decorate(AdminCommandContext context, T parent, U child);
}

The DeletionDecorator interface is in the org.glassfish.config.support package.

A @Delete annotation specifies a deletion decorator using a decorator element. For
example:

@Configured
public interface Clusters extends ConfigBeanProxy, Injectable {

 /**
 * Return the list of clusters currently configured
 *
 * @return list of {@link Cluster }
 */
 @Element
 @Delete(value="delete-cluster", resolver= TypeAndNameResolver.class,
 decorator=Cluster.DeleteDecorator.class)
 public List<Cluster> getCluster();
}

The @Delete annotation is on a method of the parent class. However, the referenced
deletion decorator class is associated with the child class. For example:

@Configured
public interface Cluster extends ConfigBeanProxy, ... {

 ..
 @Service
 @Scoped(PerLookup.class)
 class DeleteDecorator implements DeletionDecorator<Clusters, Cluster> {

 }
}

The decorator class can optionally be an inner class of the child class. You can inject
command options using the @Param annotation. You can also inject HK2 services or
configuration instances.

Implementing Create, Delete, and List Commands Using Annotations

Extending the asadmin Utility 4-25

Specifying Command Execution
Commands specified with the @Create, @Delete, and @Listing annotations can use
the @ExecuteOn annotation. The @ExecuteOn annotation specifies whether the
command runs on the DAS, on server instances, or both (the default). For more
information, see Specifying asadmin Subcommand Execution.

To add an @ExecuteOn annotation to a @Create or @Delete annotation, use the cluster
element. For example:

@Create(value="create-instance", resolver=TypeResolver.class,
 decorator=Server.CreateDecorator.class,
 cluster=@org.glassfish.api.admin.ExecuteOn(value=RuntimeType.DAS))

Using Multiple Command Annotations
You can specify multiple command annotations on the same method. The following
example combines create, delete, and list commands for clusters:

@Configured
public interface Clusters extends ConfigBeanProxy, Injectable {

 /**
 * Return the list of clusters currently configured
 *
 * @return list of {@link Cluster }
 */
 @Element
 @Create(value="create-cluster", decorator=Cluster.Decorator.class)
 @Delete(value="delete-cluster", resolver= TypeAndNameResolver.class,
 decorator=Cluster.DeleteDecorator.class)
 @Listing(value="list-clusters")
 public List<Cluster> getCluster();
}

You can also specify multiple create or delete command annotations for the same
configuration object type using the @Creates or @Deletes annotation (both in the
org.glassfish.config.support package). For example:

@Element
@Creates(
 @Create(value="create-something", decorator=CreateSomething.Decorator)
 @Create(value="create-something-else", decorator=CreateSomethingElse.Decorator)
 List<Something> getSomethings();
)

These commands create configuration object instances of the same type. Differences in
the decorators and resolvers can produce differences in the options each command
takes. The @Param annotated attributes of the created type define a superset of options
for both commands.

Implementing Create, Delete, and List Commands Using Annotations

4-26 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

5

Adding Monitoring Capabilities 5-1

5Adding Monitoring Capabilities

Monitoring is the process of reviewing the statistics of a system to improve
performance or solve problems. By monitoring the state of components and services
that are deployed in the GlassFish Server, system administrators can identify
performance bottlenecks, predict failures, perform root cause analysis, and ensure that
everything is functioning as expected. Monitoring data can also be useful in
performance tuning and capacity planning.

An add-on component typically generates statistics that the GlassFish Server can
gather at run time. Adding monitoring capabilities enables an add-on component to
provide statistics to GlassFish Server in the same way as components that are supplied
in GlassFish Server distributions. As a result, system administrators can use the same
administrative interfaces to monitor statistics from any installed GlassFish Server
component, regardless of the origin of the component.

The following topics are addressed here:

■ Defining Statistics That Are to Be Monitored

■ Updating the Monitorable Object Tree

■ Dotted Names and REST URLs for an Add-On Component's Statistics

■ Example of Adding Monitoring Capabilities

Defining Statistics That Are to Be Monitored
At runtime, your add-on component might perform operations that affect the behavior
and performance of your system. For example, your component might start a thread of
control, receive a request from a service, or request a connection from a connection
pool. Monitoring the statistics that are related to these operations helps a system
administrator maintain the system.

To provide statistics to GlassFish Server, your component must define events for the
operations that generate these statistics. At runtime, your component must send these
events when performing the operations for which the events are defined. For example,
to enable the number of received requests to be monitored, a component must send a
"request received" event each time that the component receives a request.

A statistic can correspond to single event or to multiple events.

■ Counter statistics typically correspond to a single event. For example, to calculate
the number of received requests, only one event is required, for example, a
"request received" event. Every time that a "request received" event is sent, the
number of received requests is increased by 1.

Defining Statistics That Are to Be Monitored

5-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

■ Timer statistics typically correspond to multiple events. For example, to calculate
the time to process a request, two requests, for example, a "request received" event
and a "request completed" event.

Defining statistics that are to be monitored involves the following tasks:

■ Defining an Event Provider

■ Sending an Event

Defining an Event Provider
An event provider defines the types of events for the operations that generate statistics
for an add-on component.

GlassFish Server enables you to define an event provider in the following ways:

■ By writing a Java Class. Define an event provider this way if you have access to
the source code of the component for which you are defining an event provider.

■ By writing an XML fragment. Define an event provider this way if you do not have
access to the source code of the component for which you are defining and event
provider.

Defining an Event Provider by Writing a Java Class
To define an event provider, write a Java language class that defines the types of
events for the component. Your class is not required to extend any specific class or
implement any interfaces.

To identify your class as an event provider, annotate the declaration of the class with
the org.glassfish.external.probe.provider.annotations.ProbeProvider
annotation.

To create a name space for event providers and to uniquely identify an event provider
to the monitoring infrastructure of GlassFish Server, set the elements of the
@ProbeProvider annotation as follows:

moduleProviderName
Your choice of text to identify the application to which the event provider belongs. The
value of the moduleProviderName element is not required to be unique.

For example, for event providers from GlassFish Server Open Source Edition,
moduleProviderName is glassfish.

moduleName
Your choice of name for the module for which the event provider is defined. A module
provides significant functionality of an application. The value of the moduleName
element is not required to be unique.

In GlassFish Server, examples of module names are web-container, ejb-container,
transaction, and webservices.

probeProviderName
Your choice of name to identify the event provider. To uniquely identify the event
provider, ensure that probeProviderName is unique for all event providers in the same
module.

In GlassFish Server, examples of event—provider names are jsp, servlet, and
web-module.

Defining Statistics That Are to Be Monitored

Adding Monitoring Capabilities 5-3

Defining Event Types in an Event Provider Class To define event types in an event provider
class, write one method for each type of event that is related to the component. The
requirements for each method are as follows:

■ The return value of the callback methods must be void.

■ The method body must be empty. You instantiate the event provider class in the
class that invokes the method to send the event. For more information, see
Sending an Event.

■ To enable the event to be used as an Oracle Solaris DTrace probe, each parameter
in the method signature must be a Java language primitive, such as Integer,
boolean, or String.

Annotate the declaration of each method with the
org.glassfish.external.probe.provider.annotations.Probe annotation.

By default, the type of the event is the method name. If you overload a method in your
class, you must uniquely identify the event type for each form of the method. To
uniquely identify the event type, set the name element of the @Probe annotation to the
name of the event type.

Specifying Event Parameters To enable methods in an event listener to select a subset of
values, annotate each parameter in the method signature with the
org.glassfish.external.probe.provider.annotations.ProbeParam annotation. Set
the value element of the @ProbeParam annotation to the name of the parameter.

Example of Defining an Event Provider by Writing a Java Class Example 5–1 Defining an
Event Provider by Writing a Java Class

This example shows the definition of the TxManager class. This class defines events for
the start and end of transactions that are performed by a transaction manager.

The methods in this class are as follows:

onTxBegin
This method sends an event to indicate the start of a transaction. The name of the
event type that is associated with this method is begin. A parameter that is named
txId is passed to the method.

onCompletion
This method sends an event to indicate the end of a transaction. The name of the event
type that is associated with this method is end. A parameter that is named outcome is
passed to the method.

import org.glassfish.external.probe.provider.annotations.Probe;
import org.glassfish.external.probe.provider.annotations.ProbeParam;
import org.glassfish.external.probe.provider.annotations.ProbeProvider;
@ProbeProvider(moduleProviderName="examplecomponent",
moduleName="transaction", probeProviderName="manager")
public class TxManager {

 @Probe("begin")
 public void onTxBegin(
 @ProbeParam("{txId}") String txId
){}

Note: You are not required to uniquely identify the event type for
methods that are not overloaded.

Defining Statistics That Are to Be Monitored

5-4 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

 @Probe ("end")
 public void onCompletion(
 @ProbeParam("{outcome}") boolean outcome
){}
 }

Defining an Event Provider by Writing an XML Fragment
To define an event provider, write an extensible markup language (XML) fragment
that contains a single probe-provider element.

To create a name space for event providers and to uniquely identify an event provider
to the monitoring infrastructure of GlassFish Server, set the attributes of the
probe-provider element as follows:

moduleProviderName
Your choice of text to identify the application to which the event provider belongs. The
value of the moduleProviderName attribute is not required to be unique.

For example, for event providers from GlassFish Server Open Source Edition,
moduleProviderName is glassfish.

moduleName
Your choice of name for the module for which the event provider is defined. A module
provides significant functionality of an application. The value of the moduleName
attribute is not required to be unique.

In GlassFish Server, examples of module names are web-container, ejb-container,
transaction, and webservices.

probeProviderName
Your choice of name to identify the event provider. To uniquely identify the event
provider, ensure that probeProviderName is unique for all event providers in the same
module.

In GlassFish Server, examples of event—provider names are jsp, servlet, and
web-module.

Within the probe-provider element, add one probe element for each event type that
you are defining. To identify the event type, set the name attribute of the probe
element to the type.

To define the characteristics of each event type, add the following elements within the
probe element:

class
This element contains the fully qualified Java class name of the component that
generates the statistics for which you are defining events.

method
This element contains the name of the method that is invoked to generate the statistic.

signature
This element contains the following information about the signature if the method:

return-type (paramater-type-list)

return-type
The return type of the method.

Defining Statistics That Are to Be Monitored

Adding Monitoring Capabilities 5-5

paramater-type-list
A comma-separated list of the types of the parameters in the method signature.

probe-param
The attributes of this element identify the type and the name of a parameter in the
method signature. One probe-param element is required for each parameter in the
method signature. The probe-param element does not contain any data.

The attributes of the probe-param element are as follows:

type
Specifies the type of the parameter.

name
Specifies the name of the parameter.

return-param
The type attribute of this element specifies the return type of the method. The
return-param element does not contain any data.

Example 5–2 Defining an Event Provider by Writing an XML Fragment

This example defines an event provider for the glassfish:web:jsp component. The
Java class of this component is com.sun.enterprise.web.jsp.JspProbeEmitterImpl.
The event provider defines one event of type jspLoadedEvent. The signature of the
method that is associated with this event is as follows:

void jspLoaded (String jsp, String hostName)

<probe-provider moduleProviderName="glassfish" moduleName="web"
probeProviderName="jsp">
 <probe name="jspLoadedEvent">
 <class>com.sun.enterprise.web.jsp.JspProbeEmitterImpl</class>
 <method>jspLoaded</method>
 <signature>void (String,String)</signature>
 <probe-param type="String" name="jsp"/>
 <probe-param type="String" name="hostName"/>
 <return-param type="void" />
 </probe>
</probe-provider>

Packaging a Component's Event Providers
Packaging a component's event providers enables the monitoring infrastructure of
GlassFish Server to discover the event providers automatically.

To package a component's event providers, add an entry to the component's
META-INF/MANIFEST.MF file that identifies all of the component's event providers. The
format of the entry depends on how the event providers are defined:

■ If the event providers are defined as Java classes, the entry is a list of the event
providers' class names as follows:

probe-provider-class-names : class-list

The class-list is a comma-separated list of the fully qualified Java class names of
the component's event providers.

■ If the event providers are defined as XML fragments, the entry is a list of the paths
to the files that contain the XML fragments as follows:

Defining Statistics That Are to Be Monitored

5-6 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

probe-provider-xml-file-names : path-list

The path-list is a comma-separated list of the paths to the XML files relative to
the root of the archive in the JAR file.

Example 5–3 Manifest Entry for Event Providers That Are Defined as Java Classes

This example shows the entry in the META-INF/MANIFEST.MF file of a component whose
event provider is the
org.glassfish.pluggability.monitoring.ModuleProbeProvider class.

probe-provider-class-names :
org.glassfish.pluggability.monitoring.ModuleProbeProvider

Sending an Event
At runtime, your add-on component might perform an operation that generates
statistics. To provide statistics about the operation to GlassFish Server, your
component must send an event of the correct type when performing the operation.

To send an event, instantiate your event provider class and invoke the method of the
event provider class for the type of the event. Instantiate the class and invoke the
method in the class that represents your add-on component. Ensure that the method is
invoked when your component performs the operation for which the event was
defined. One way to meet this requirement is to invoke the method for sending the
event in the body of the method for performing the operation.

Example 5–4 Sending an Event

This example shows the code for instantiating the TxManager class and invoking the
onTxBegin method to send an event of type begin. This event indicates that a
component is about to begin a transaction.

The TxManager class is instantiated in the constructor of the TransactionManagerImpl
class. To ensure that the event is sent at the correct time, the onTxBegin method is
invoked in the body of the begin method, which starts a transaction.

The declaration of the onTxBegin method in the event provider interface is shown in
Example 5–1.

...
public class TransactionManagerImpl {
...
 public TransactionManagerImpl() {
 TxManager txProvider = new TxManager();
 ...
 }
 ...
 public void begin() {
 String txId = createTransactionId();

 txProvider.onTxBegin(txId); //emit
 }
...
}

Updating the Monitorable Object Tree

Adding Monitoring Capabilities 5-7

Updating the Monitorable Object Tree
A monitorable object is a component, subcomponent, or service that can be monitored.
GlassFish Server uses a tree structure to track monitorable objects.

Because the tree is dynamic, the tree changes as components of the GlassFish Server
instance are added, modified, or removed. Objects are also added to or removed from
the tree in response to configuration changes. For example, if monitoring for a
component is turned off, the component's monitorable object is removed from the tree.

To enable system administrators to access statistics for all components in the same
way, you must provide statistics for an add-on component by updating the
monitorable object tree. Statistics for the add-on component are then available through
the GlassFish Server administrative commands get, list, and set. These commands
locate an object in the tree through the object's dotted name.

For more information about the tree structure of monitorable objects, see "How the
Monitoring Tree Structure Works" in GlassFish Server Open Source Edition Administration
Guide.

To make an add-on component a monitorable object, you must add the add-on
component to the monitorable object tree.

To update the statistics for an add-on component, you must add the statistics to the
monitorable object tree, and create event listeners to gather statistics from events that
represent these statistics. At runtime, these listeners must update monitorable objects
with statistics that these events contain. The events are sent by event provider classes.
For information about how to create event provider classes and send events, see
Defining Statistics That Are to Be Monitored.

Updating the monitorable object tree involves the following tasks:

■ Creating Event Listeners

■ Representing a Component's Statistics in an Event Listener Class

■ Subscribing to Events From Event Provider Classes

■ Registering an Event Listener

Creating Event Listeners
An event listener gathers statistics from events that an event provider sends. To enable
an add-on component to gather statistics from events, create listeners to receive events
from the event provider. The listener can receive events from the add-on component in
which the listener is created and from other components.

To create an event listener, write a Java class to represent the listener. The listener can
be any Java object.

An event listener also represents a component's statistics. To enable the Application
Server Management Extensions (AMX) to expose the statistics to client applications,
annotate the declaration of the class with the org.glassfish.gmbal.ManagedObject
annotation.

Ensure that the class that you write meets these requirements:

■ The return value of all callback methods in the listener must be void.

■ Because the methods of your event provider class may be entered by multiple
threads, the listener must be thread safe.

Updating the Monitorable Object Tree

5-8 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

■ The listener must have the same restrictions as a Java Platform, Enterprise Edition
(Java EE) application. For example, the listener cannot open server sockets, or
create threads.

A listener is called in the same thread as the event method. As a result, the listener can
use thread locals. If the monitored system allows access to thread locals, the listener
can access thread locals of the monitored system.

Representing a Component's Statistics in an Event Listener Class
Represent each statistic as the property of a JavaBeans specification getter method of
your listener class. Methods in the listener class for processing events can then access
the property through the getter method. For more information, see Subscribing to
Events From Event Provider Classes.

To enable AMX to expose the statistic to client applications, annotate the declaration of
the getter method with the org.glassfish.gmbal.ManagedAttribute annotation. Set
the id element of the @ManagedAttribute annotation to the property name all in
lowercase.

The data type of the property that represents a statistic must be a class that provides
methods for computing the statistic from event data.

The org.glassfish.external.statistics.impl package provides the following
classes to gather and compute statistics data:

AverageRangeStatisticImpl
Provides standard measurements of the lowest and highest values that an attribute has
held and the current value of the attribute.

BoundaryStatisticImpl
Provides standard measurements of the upper and lower limits of the value of an
attribute.

BoundedRangeStatisticImpl
Aggregates the attributes of RangeStatisticImpl and BoundaryStatisticImpl and
provides standard measurements of a range that has fixed limits.

CountStatisticImpl
Provides standard count measurements.

RangeStatisticImpl
Provides standard measurements of the lowest and highest values that an attribute has
held and the current value of the attribute.

StatisticImpl
Provides performance data.

StringStatisticImpl
Provides a string equivalent of a counter statistic.

TimeStatisticImpl
Provides standard timing measurements.

Note: A listener that is not registered to listen for events is never
called by the framework. Therefore, unregistered listeners do not
consume any computing resources, such as memory or processor
cycles.

Updating the Monitorable Object Tree

Adding Monitoring Capabilities 5-9

Example 5–5 Representing a Component's Statistics in an Event Listener Class

This example shows the code for representing the txcount statistic in the TxListener
class.

...
import org.glassfish.external.statistics.CountStatistic;
import org.glassfish.external.statistics.impl.CountStatisticImpl;
...
import org.glassfish.gmbal.ManagedAttribute;
import org.glassfish.gmbal.ManagedObject;

...
@ManagedObject
public class TxListener {

 private CountStatisticImpl txCount = new CountStatisticImpl("TxCount",
 "count", "Number of completed transactions");
...
 @ManagedAttribute(id="txcount")
 public CountStatistic getTxCount(){
 return txCount;
 }
}

Subscribing to Events From Event Provider Classes
To receive events from event provider classes, a listener must subscribe to the events.
Subscribing to events also specifies the provider and the type of events that the listener
will receive.

To subscribe to events from event provider classes, write one method in your listener
class to process each type of event. To specify the provider and the type of event,
annotate the method with the
org.glassfish.external.probe.provider.annotations.ProbeListener annotation.
In the @ProbeListener annotation, specify the provider and the type as follows:

"module-providername:module-name:probe-provider-name:event-type"

module-providername
The application to which the event provider belongs. This parameter must be the
value of the moduleProviderName element or attribute in the definition of the event
provider. See Defining an Event Provider by Writing a Java Class and Defining an
Event Provider by Writing an XML Fragment.

module-name
The module for which the event provider is defined. This parameter must match be
the value of the moduleName element or attribute in the definition of the event provider.
See Defining an Event Provider by Writing a Java Class and Defining an Event
Provider by Writing an XML Fragment.

probe-provider-name
The name of the event provider. This parameter must match be the value of the
probeProviderName element or attribute in the definition of the event provider. See
Defining an Event Provider by Writing a Java Class and Defining an Event Provider by
Writing an XML Fragment.

Updating the Monitorable Object Tree

5-10 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

event-type
The type of the event. This type is defined in the event provider class. For more
information, see Defining Event Types in an Event Provider Class.

Annotate each parameter in the method signature with the @ProbeParam annotation.
Set the value element of the @ProbeParam annotation to the name of the parameter.

In the method body, provide the code to update monitoring statistics in response to the
event.

Example 5–6 Subscribing to Events From Event Provider Classes

This example shows the code for subscribing to events of type begin from the tx
component. The provider of the component is TxManager. The body of the begin
method contains code to increase the transaction count txcount by 1 each time that an
event is received.

The definition of the begin event type is shown in Example 5–1.

The code for sending begin events is shown in Example 5–4.

The instantiation of the txCount object is shown in Example 5–5.

...
import org.glassfish.external.probe.provider.annotations.ProbeListener;
import org.glassfish.external.probe.provider.annotations.ProbeParam;
import org.glassfish.gmbal.ManagedObject;
...
@ManagedObject
public class TxListener {
 ...; @ProbeListner("examplecomponent:transaction:manager:begin")
 public void begin(
 @ProbeParam("{txId}")
 String txId) {
 txCount.increment();
 }
 }

Registering an Event Listener
Registering an event listener enables the listener to receive callbacks from the
GlassFish Server event infrastructure. The listener can then collect data from events
and update monitorable objects in the object tree. These monitorable objects form the
basis for monitoring statistics.

Registering an event listener also makes a component and its statistics monitorable
objects by adding statistics for the component to the monitorable object tree.

At runtime, the GlassFish Server event infrastructure registers listeners for an event
provider when the event provider is started and unregisters them when the event
provider is shut down. As a result, listeners have no dependencies on other
components.

To register a listener, invoke the static
org.glassfish.external.probe.provider.StatsProviderManager.register method
in the class that represents your add-on component. In the method invocation, pass the
following information as parameters:

■ The name of the configuration element with which all statistics in the event
listener are to be associated. System administrators use this element for enabling
or disabling monitoring for the event listener.

Dotted Names and REST URLs for an Add-On Component's Statistics

Adding Monitoring Capabilities 5-11

■ The node in the monitorable object tree under which the event listener is to be
registered. To specify the node, pass one of the following constants of the
org.glassfish.external.probe.provider.PluginPointPluginPoint
enumeration:

– To register the listener under the server/applications node, pass the
APPLICATIONS constant.

– To register the listener under the server node, pass the SERVER constant.

■ The path through the monitorable object tree from the node under which the event
listener is registered down to the statistics in the event listener. The nodes in this
path are separated by the slash (/) character.

■ The listener object that you are registering.

Example 5–7 Registering an Event Listener

This example shows the code for registering the event listener TxListener for the
add-on component that is represented by the class TransactionManagerImpl. The
statistics that are defined in this listener are associated with the web-container
configuration element. The listener is registered under the server/applications node.
The path from this node to the statistics in the event listener is tx/txapp.

Code for the constructor of the TxListener class is beyond the scope of this example.

...
import org.glassfish.external.probe.provider.StatsProviderManager;
import org.glassfish.external.probe.provider.PluginPoint
...
public class TransactionManagerImpl {
...
 StatsProviderManager.register("web-container", PluginPoint.APPLICATIONS,
 "tx/txapp", new TxListener());
...
}

Dotted Names and REST URLs for an Add-On Component's Statistics
The GlassFish Server administrative subcommands get, list, and set locate a statistic
through the dotted name of the statistic. The dotted name of a statistic for an add-on
component is determined from the registration of the event listener that defines the
statistic as follows:

listener-parent-node.path-to-statistic.statistic-name

listener-parent-node
The node in the monitorable object tree under which the event listener that defines the
statistic is registered. This node is passed in the invocation of the register method
that registers the event listener. For more information, see Registering an Event
Listener.

path-to-statistic
The path through the monitorable object tree from the node under which the event
listener is registered down to the statistic in the event listener in which each slash is
replaced with a period. This path is passed in the invocation of the register method
that registers the event listener. For more information, see Registering an Event
Listener.

Example of Adding Monitoring Capabilities

5-12 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

statistic-name
The name of the statistic. This name is the value of the id element of the
@ManagedAttribute annotation on the property that represents the statistic. For more
information, see Representing a Component's Statistics in an Event Listener Class.

For example, the dotted name of the txcount statistic that is defined in Example 5–5
and registered in Example 5–7 is as follows:

server.applications.tx.txapp.txcount

The formats of the URL to a REST resource that represents a statistic is as follows:

http://host:port/monitoring/domain/path

host
The host where the DAS is running.

port
The HTTP port or HTTPS port for administration.

path
The path to the statistic. The path is the dotted name of the attribute in which each dot
(.) is replaced with a slash (/).

For example, the URL the REST resource for the txcount statistic that is defined in
Example 5–5 and registered in Example 5–7 is as follows:

http://localhost:4848/monitoring/domain/server/applications/tx/txapp/txcount

In this example, the DAS is running on the local host and the HTTP port for
administration is 4848.

Example of Adding Monitoring Capabilities
This example shows a component that monitors the number of requests that a
container receives. The following table provides a cross-reference to the listing of each
class or interface in the example.

Example 5–8 Event Provider Class

This example illustrates how to define an event provider as explained in Defining an
Event Provider by Writing a Java Class.

The example shows the definition of the ModuleProbeProvider class. The event
provider sends events when the request count is increased by 1 or decreased by 1.

This class defines the following methods:

■ moduleCountIncrementEvent

Class or Interface Listing

ModuleProbeProvider Example 5–8

ModuleBootStrap Example 5–9

ModuleStatsTelemetry Example 5–10

Module Example 5–11

ModuleMBean Example 5–12

Example of Adding Monitoring Capabilities

Adding Monitoring Capabilities 5-13

■ moduleCountDecrementEvent

The name of each method is also the name of the event type that is associated with the
method.

A parameter that is named count is passed to each method.

package org.glassfish.pluggability.monitoring;

import org.glassfish.external.probe.provider.annotations.Probe;
import org.glassfish.external.probe.provider.annotations.ProbeParam;
import org.glassfish.external.probe.provider.annotations.ProbeProvider;

/**
 * Monitoring count events
 * Provider interface for module specific probe events.
 *
 */
@ProbeProvider(moduleProviderName = "glassfish", moduleName = "mybeanmodule",
probeProviderName = "mybean")
public class ModuleProbeProvider {

 /**
 * Emits probe event whenever the count is incremented
 */
 @Probe(name = "moduleCountIncrementEvent")
 public void moduleCountIncrementEvent(
 @ProbeParam("count") Integer count) {
 }

 /**
 * Emits probe event whenever the count is decremented
 */
 @Probe(name = "moduleCountDecrementEvent")
 public void moduleCountDecrementEvent(
 @ProbeParam("count") Integer count) {
 }
}

Example 5–9 Bootstrap Class

This example illustrates how to register an event listener as explained in Registering
an Event Listener. The example shows the code for registering an instance of the
listener class ModuleStatsTelemetry. This instance is added as a child of the
server/applications node of the tree.

package org.glassfish.pluggability.monitoring;

import org.jvnet.hk2.component.PostConstruct;
import org.jvnet.hk2.annotations.Service;
import org.jvnet.hk2.annotations.Scoped;
import org.jvnet.hk2.component.Singleton;
import org.glassfish.external.probe.provider.StatsProviderManager;
import org.glassfish.external.probe.provider.PluginPoint;

/**
 * Monitoring Count Example
 * Bootstrap object for registering probe provider and listener
 *
 */
@Service

Example of Adding Monitoring Capabilities

5-14 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

@Scoped(Singleton.class)
public class ModuleBootStrap implements PostConstruct {

 @Override
 public void postConstruct() {
 try {
 StatsProviderManager.register("web-container",
 PluginPoint.APPLICATIONS, "myapp", new
ModuleStatsTelemetry());
 } catch (Exception e) {
 System.out.println("Caught exception in postconstruct");
 e.printStackTrace();
 }
 }
}

Example 5–10 Listener Class

This example shows how to perform the following tasks:

■ Creating Event Listeners. The example shows the code of the
ModuleStatsTelemetry listener class.

■ Representing a Component's Statistics in an Event Listener Class. The example
shows the code for representing the countmbeancount statistic.

■ Subscribing to Events From Event Provider Classes. The example shows the code
for subscribing to the following types of events from the count component:

– moduleCountIncrementEvent

– moduleCountDecrementEvent

package org.glassfish.pluggability.monitoring;

import org.glassfish.external.statistics.CountStatistic;
import org.glassfish.external.statistics.impl.CountStatisticImpl;
import org.glassfish.external.probe.provider.annotations.ProbeListener;
import org.glassfish.external.probe.provider.annotations.ProbeParam;
import org.glassfish.gmbal.ManagedAttribute;
import org.glassfish.gmbal.ManagedObject;

/**
 * Monitoring counter example
 * Telemtry object which listens to probe events and updates
 * the monitoring stats
 *
 */
@ManagedObject
public class ModuleStatsTelemetry {

 private CountStatisticImpl countMBeanCount = new CountStatisticImpl(
 "CountMBeanCount", "count", "Number of MBeans");

 @ManagedAttribute(id = "countmbeancount")
 public CountStatistic getCountMBeanCount() {
 return countMBeanCount;
 }

 @ProbeListener("count:example:countapp:moduleCountIncrementEvent")
 public void moduleCountIncrementEvent(

Example of Adding Monitoring Capabilities

Adding Monitoring Capabilities 5-15

 @ProbeParam("count") Integer count) {
 countMBeanCount.increment();
 }

 @ProbeListener("count:example:countapp:moduleCountDecrementEvent")
 public void moduleCountDecrementEvent(
 @ProbeParam("count") Integer count) {
 countMBeanCount.decrement();
 }
}

Example 5–11 MBean Interface

This example defines the interface for a simple standard MBean that has methods to
increase and decrease a counter by 1.

package com.example.count.monitoring;

/**
 * Monitoring counter example
 * ModuleMBean interface
 *
 */
public interface ModuleMBean {
 public Integer getCount() ;
 public void incrementCount() ;
 public void decrementCount() ;
}

Example 5–12 MBean Implementation

This example illustrates how to send an event as explained in Sending an Event. The
example shows code for sending events as follows:

■ The moduleCountIncrementEvent method is invoked in the body of the
incrementCount method.

■ The moduleCountDecrementEvent method is invoked in the body of the
decrementCount method.

The methods incrementCount and decrementCount are invoked by an entity that is
beyond the scope of this example, for example, JConsole.

package org.glassfish.pluggability.monitoring;

/**
 * Monitoring counter example
 * ModuleMBean implementation
 *
 */
public class Module implements ModuleMBean {

 private int k = 0;
 private ModuleProbeProvider mpp = null;

 @Override
 public Integer getCount() {
 return k;
 }

Example of Adding Monitoring Capabilities

5-16 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

 @Override
 public void incrementCount() {
 k++;
 if (mpp != null) {
 mpp.moduleCountIncrementEvent(k);
 }
 }

 @Override
 public void decrementCount() {
 k--;
 if (mpp != null) {
 mpp.moduleCountDecrementEvent(k);
 }
 }

 void setProbeProvider(ModuleProbeProvider mpp) {
 this.mpp = mpp;
 }
}

6

Adding Configuration Data for a Component 6-1

6Adding Configuration Data for a Component

The configuration data of a component determines the characteristics and runtime
behavior of a component. GlassFish Server provides interfaces to enable an add-on
component to store its configuration data in the same way as other GlassFish Server
components. These interfaces are similar to interfaces that are defined in Java
Specification Request (JSR) 222: Java Architecture for XML Binding (JAXB) 2.0
(http://jcp.org/en/jsr/detail?id=222). By using these interfaces to store
configuration data, you ensure that the add-on component is fully integrated with
GlassFish Server. As a result, administrators can configure an add-on component in
the same way as they can configure other GlassFish Server components.

The following topics are addressed here:

■ How GlassFish Server Stores Configuration Data

■ Defining an Element

■ Defining an Attribute of an Element

■ Defining a Subelement

■ Validating Configuration Data

■ Initializing a Component's Configuration Data

■ Creating a Transaction to Update Configuration Data

■ Dotted Names and REST URLs of Configuration Attributes

■ Examples of Adding Configuration Data for a Component

How GlassFish Server Stores Configuration Data
GlassFish Server stores the configuration data for a domain in a single configuration
file that is named domain.xml. This file is an extensible markup language (XML)
instance that contains a hierarchy of elements to represent a domain's configuration.
The content model of this XML instance is not defined in a document type definition
(DTD) or an XML schema. Instead, the content model is derived from Java language
interfaces with appropriate annotations. You use these annotations to add
configuration data for a component as explained in the sections that follow.

Defining an Element
An element represents an item of configuration data. For example, to represent the
configuration data for a network listener, GlassFish Server defines the
network-listener element.

Defining an Element

6-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

Define an element for each item of configuration data that you are adding.

To Define an Element
1. Define a Java language interface to represent the element.

Define one interface for each element. Do not represent multiple elements in a
single interface.

The name that you give to the interface determines name of the element as
follows:

■ A change from lowercase to uppercase in the interface name is transformed to
the hyphen (-) separator character.

■ The element name is all lowercase.

For example, to define an interface to represent the wombat-container-config
element, give the name WombatContainerConfig to the interface.

2. Specify the parent of the element.

To specify the parent, extend the interface that identifies the parent as shown in
the following table.

3. Annotate the declaration of the interface with the
org.jvnet.hk2.config.Configured annotation.

Example 6–1 Declaration of an Interface That Defines an Element

This example shows the declaration of the WombatContainerConfig interface that
represents the wombat-container-config element. The parent of this element is the
config element.

...
import org.jvnet.hk2.config.Configured;
...
import org.glassfish.api.admin.config.Container;
...
@Configured
public interface WombatContainerConfig extends Container {
...
}

How Interfaces That Are Annotated With @Configured Are Implemented
You are not required to implement any interfaces that you annotate with the
@Configured annotation. GlassFish Server implements these interfaces by using the
Dom class. GlassFish Server creates a Java Platform, Standard Edition (Java SE) proxy
for each Dom object to implement the interface.

Parent Element Interface to Extend

config org.glassfish.api.admin.config.Container

applications org.glassfish.api.admin.config.ApplicationName

Another element that
you are defining

org.jvnet.hk2.config.ConfigBeanProxy

Defining an Attribute of an Element

Adding Configuration Data for a Component 6-3

Defining an Attribute of an Element
The attributes of an element describe the characteristics of the element. For example,
the port attribute of the network-listener element identifies the port number on
which the listener listens.

Representing an Attribute of an Element
Represent each attribute of an element as the property of a pair of JavaBeans
specification getter and setter methods of the interface that defines the element. The
component for which the configuration data is being defined can then access the
attribute through the getter method. The setter method enables the attribute to be
updated.

Specifying the Data Type of an Attribute
The data type of an attribute is the return type of the getter method that is associated
with the attribute. To enable the attribute take properties in the form ${property-name}
as values, specify the data type as String.

Identifying an Attribute of an Element
To identify an attribute of an element, annotate the declaration of the getter method
that is associated with the attribute with the org.jvnet.hk2.config.Attribute
annotation.

To specify the properties of the attribute, use the elements of the @Attribute
annotation as explained in the sections that follow.

Specifying the Name of an Attribute
To specify the name of an attribute, set the value element of the @Attribute
annotation to a string that specifies the name. If you do not set this element, the name
is derived from the name of the property as follows:

■ A change from lowercase to uppercase in the interface name is transformed to the
hyphen (-) separator character.

■ The element name is all lowercase.

For example, if the getter method getNumberOfInstances is defined for the property
NumberOfInstances to represent an attribute, the name of the attribute is
number-of-instances.

Specifying the Default Value of an Attribute
The default value of an attribute is the value that is applied if the attribute is omitted
when the element is written to the domain configuration file.

To specify the default value of an attribute, set the defaultValue element of the
@Attribute annotation to a string that contains the default value. If you do not set this
element, the parameter has no default value.

Specifying Whether an Attribute Is Required or Optional
Whether an attribute is required or optional determines how GlassFish Server
responds if the parameter is omitted when the element is written to the domain
configuration file:

Defining a Subelement

6-4 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

■ If the attribute is required, an error occurs.

■ If the attribute is optional, the element is written successfully to the domain
configuration file.

To specify whether an attribute is required or optional, set the required element of the
@Attribute annotation as follows:

■ If the attribute is required, set the required element to true.

■ If the attribute is optional, set the required element to false. This value is the
default.

Example of Defining an Attribute of an Element

Example 6–2 Defining an Attribute of an Element

This example defines the attribute number-of-instances. To enable the attribute take
properties in the form ${property-name} as values, the data type of this attribute is
String.

import org.jvnet.hk2.config.Attribute;
...
 @Attribute
 public String getNumberOfInstances();
 public void setNumberOfInstances(String instances) throws
PropertyVetoException;
...

Defining a Subelement
A subelement represents a containment or ownership relationship. For example,
GlassFish Server defines the network-listeners element to contain the configuration
data for individual network listeners. The configuration data for an individual
network listener is represented by the network-listener element, which is a
subelement of network-listeners element.

To Define a Subelement
1. Define an interface to represent the subelement.

For more information, see Defining an Element.

The interface that represents the subelement must extend the
org.jvnet.hk2.config.ConfigBeanProxy interface.

2. In the interface that defines the parent element, identify the subelement to its
parent element.

a. Represent the subelement as the property of a JavaBeans specification getter or
setter method.

b. Annotate the declaration of the getter or setter method that is associated with
the subelement with the org.jvnet.hk2.config.Element annotation.

Example 6–3 Declaring an Interface to Represent a Subelement

This example shows the declaration of the WombatElement interface to represent the
wombat-element element.

Validating Configuration Data

Adding Configuration Data for a Component 6-5

...
import org.jvnet.hk2.config.ConfigBeanProxy;
import org.jvnet.hk2.config.Configured;
...
@Configured
public interface WombatElement extends ConfigBeanProxy {
...
}
...

Example 6–4 Identifying a Subelement to its Parent Element

This example identifies the wombat-element element as a subelement.

...
import org.jvnet.hk2.config.Element;
...
import java.beans.PropertyVetoException;
...
@Element
 public WombatElement getElement();
 public void setElement(WombatElement element) throws PropertyVetoException;
...

Validating Configuration Data
Validating configuration data ensures that attribute values that are being set or
updated do not violate any constraints that you impose on the data. For example, you
might require that an attribute that represents a name is not null, or an integer that
represents a port number is within the range of available port numbers. Any attempt
to set or update an attribute value that fails validation fails. Any validations that you
specify for an attribute are performed when the attribute is initialized and every time
the attribute is changed.

To standardize the validation of configuration data, GlassFish Server uses JSR 303:
Bean Validation (http://jcp.org/en/jsr/detail?id=303) for validating
configuration data. JSR 303 defines a metadata model and API for the validation of
JavaBeans components.

To validate an attribute of an element, annotate the attribute's getter method with the
annotation in the javax.validation.constraints package that performs the
validation that you require. The following table lists commonly used annotations for
validating GlassFish Server configuration data. For the complete list of annotations,
see the javax.validation.constraints package summary
(http://download.oracle.com/docs/cd/E17410_
01/javaee/6/api/javax/validation/constraints/package-summary.htm
l).

Table 6–1 Commonly Used Annotations for Validating GlassFish Server Configuration
Data

Validation Annotation

Not null javax.validation.constraints.NotNull

Null javax.validation.constraints.Null

Initializing a Component's Configuration Data

6-6 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

Example 6–5 Specifying a Range of Valid Values for an Integer

This example specifies that the attribute rotation-interval-in-minutes must be a
positive integer.

...
import javax.validation.constraints.Max;
import javax.validation.constraints.Min;
...
@Min(value=1)
@Max(value=Integer.MAX_VALUE)
String getRotationIntervalInMinutes();
...

Example 6–6 Specifying Regular Expression Matching

This example specifies that the attribute classname must contain only non-whitespace
characters.

import javax.validation.constraints.Pattern;
...
@Pattern(regexp="^[\\S]*$")
String getClassname();
...

Initializing a Component's Configuration Data
To ensure that a component's configuration data is added to the domain.xml file when
the component is first instantiated, you must initialize the component's configuration
data.

Initializing a component's configuration data involves the following tasks:

■ To Define a Component's Initial Configuration Data

■ To Write a Component's Initial Configuration Data to the domain.xml File

To Define a Component's Initial Configuration Data
1. Create a plain-text file that contains an XML fragment to represent the

configuration data.

Minimum value javax.validation.constraints.Min

Set the value element of this annotation to the minimum
allowed value.

Maximum value javax.validation.constraints.Max

Set the value element of this annotation to the maximum
allowed value.

Regular expression matching javax.validation.constraints.Pattern

Set the regexp element of this annotation to the regular
expression that is to be matched.

Table 6–1 (Cont.) Commonly Used Annotations for Validating GlassFish Server
Configuration Data

Validation Annotation

Initializing a Component's Configuration Data

Adding Configuration Data for a Component 6-7

■ Ensure that each XML element accurately represents the interface that is
defined for the element.

■ Ensure that any subelements that you are initializing are correctly nested.

■ Set attributes of the elements to their required initial values.

2. When you package the component, include the file that contains the XML
fragment in the component's JAR file.

Example 6–7 XML Data Fragment

This example shows the XML data fragment for adding the wombat-container-config
element to the domain.xml file. The wombat-container-config element contains the
subelement wombat-element. The attributes of wombat-element are initialized as
follows:

■ The foo attribute is set to something.

■ The bar attribute is set to anything.

<wombat-container-config>
 <wombat-element foo="something" bar="anything"/>
</wombat-container-config>

To Write a Component's Initial Configuration Data to the domain.xml File
Add code to write the component's initial configuration data in the class that
represents your add-on component. If your add-on component is a container, add this
code to the sniffer class. For more information about adding a container, see Adding
Container Capabilities.

1. Set an optional dependency on an instance of the class that represents the XML
element that you are adding.

a. Initialize the instance variable to null.

If the element is not present in the domain.xml file when the add-on
component is initialized, the instance variable remains null.

b. Annotate the declaration of the instance variable with the
org.jvnet.hk2.annotations.Inject annotation.

c. Set the optional element of the @Inject annotation to true.

2. Set a dependency on an instance of the following classes:

■ org.glassfish.api.admin.config.ConfigParser

The ConfigParser class provides methods to parse an XML fragment and to
write the fragment to the correct location in the domain.xml file.

■ org.jvnet.hk2.component.Habitat

3. Invoke the parseContainerConfig method of the ConfigParser object only if the
instance is null.

If your add-on component is a container, invoke this method within the
implementation of the setup method the sniffer class. When the container is first
instantiated, GlassFish Server invokes the setup method.

The test that the instance is null is required to ensure that the configuration data is
added only if the data is not already present in the domain.xml file.

Initializing a Component's Configuration Data

6-8 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

In the invocation of the parseContainerConfig method, pass the following items
as parameters:

■ The Habitat object on which you set a dependency

■ The URL to the file that contains the XML fragment that represents the
configuration data

Example 6–8 Writing a Component's Initial Configuration Data to the domain.xml File

This example writes the XML fragment in the file init.xml to the domain.xml file. The
fragment is written only if the domain.xml file does not contain the
wombat-container-config-element.

The wombat-container-config element is represented by the WombatContainerConfig
interface. An optional dependency is set on an instance of a class that implements
WombatContainerConfig.

...
import org.glassfish.api.admin.config.ConfigParser;
import org.glassfish.examples.extension.config.WombatContainerConfig;
...
import org.jvnet.hk2.annotations.Inject;
import org.jvnet.hk2.component.Habitat;
import com.sun.enterprise.module.Module;

import java.util.logging.Logger;
...
import java.io.IOException;
import java.lang.annotation.Annotation;
import java.lang.reflect.Array;
import java.net.URL;
...
 @Inject(optional=true)
 WombatContainerConfig config=null;
...
@Inject
 ConfigParser configParser;

 @Inject
 Habitat habitat;

 public Module[] setup(String containerHome, Logger logger) throws IOException
{
 if (config==null) {
 URL url = this.getClass().getClassLoader().getResource("init.xml");
 if (url!=null) {
 configParser.parseContainerConfig(habitat, url,
 WombatContainerConfig.class);
 }
 }
 return null;
 }
...

Example 6–9 domain.xml File After Initialization

This example shows the domain.xml file after the setup method was invoked to add
the wombat-container-config element under the config element.

<domain...>

Creating a Transaction to Update Configuration Data

Adding Configuration Data for a Component 6-9

...
 <configs>
 <config name="server-config">
 <wombat-container-config number-of-instances="5">
 <wombat-element foo="something" bar="anything" />
 </wombat-container-config>
 <http-service>
...
</domain>

Creating a Transaction to Update Configuration Data
Creating a transaction to update configuration data enables the data to be updated
without the need to specify a dotted name in the set subcommand. You can make the
transaction available to system administrators in the following ways:

■ By adding an asadmin subcommand. If you are adding an asadmin subcommand,
include the code for the transaction in the body of the subcommand's execute
method. For more information, see Extending the asadmin Utility.

■ By extending the Administration Console. For more information, see Extending
the Administration Console.

To Create a Transaction to Update Configuration Data
Any transaction that you create to modify configuration data must use a configuration
change transaction to ensure that the change is atomic, consistent, isolated, and
durable (ACID).

1. Set a dependency on the configuration object to update.

2. Define a method to invoke to perform the transaction.

a. Use the generic SimpleConfigCode interface to define the method that is to be
invoked on a single configuration object, namely: SingleConfigCode<T
extends ConfigBeanProxy>().

b. In the body of this method, implement the run method of the
SingleConfigCode<T extends ConfigBeanProxy> interface.

c. In the body of the run method, invoke the setter methods that are defined for
the attributes that you are setting.

These setter methods are defined in the interface that represents the element
whose elements you are setting.

3. Invoke the static method
org.jvnet.hk2.config.ConfigSupport.ConfigSupport.apply.

In the invocation, pass the following information as parameters to the method:

■ The code of the method that you defined in Step 2.

■ The configuration object to update, on which you set the dependency in
Step 1.

Example 6–10 Creating a Transaction to Update Configuration Data

This example shows code in the execute method of an asadmin subcommand for
updating the number-of-instances element of wombat-container-config element.

...

Dotted Names and REST URLs of Configuration Attributes

6-10 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

import org.glassfish.api.Param;
...
import org.jvnet.hk2.annotations.Inject;
import org.jvnet.hk2.config.Transactions;
import org.jvnet.hk2.config.ConfigSupport;
import org.jvnet.hk2.config.SingleConfigCode;
import org.jvnet.hk2.config.TransactionFailure;
...
 @Param
 String instances;

 @Inject
 WombatContainerConfig config;

 public void execute(AdminCommandContext adminCommandContext) {
 try {
 ConfigSupport.apply(new SingleConfigCode<WombatContainerConfig>() {
 public Object run(WombatContainerConfig wombatContainerConfig)
 throws PropertyVetoException, TransactionFailure {
 wombatContainerConfig.setNumberOfInstances(instances);
 return null;
 }
 }, config);
 } catch(TransactionFailure e) {
 }
 }
...

Dotted Names and REST URLs of Configuration Attributes
The GlassFish Server administrative subcommands get, list, and set locate a
configuration attribute through the dotted name of the attribute. The dotted name of
an attribute of a configuration element is as follows:

configs.config.server-config.element-name[.subelement-name...].attribute-name

element-name
The name of an element that contains a subelement or the attribute.

subelement-name
The name of a subelement, if any.

attribute-name
The name of the attribute.

For example, the dotted name of the foo attribute of the wombat-element element is as
follows:

configs.config.server-config.wombat-container-config.wombat-element.foo

The formats of the URL to a REST resource that represent an attribute of a
configuration element is as follows:

http://host:port/management/domain/path

host
The host where the DAS is running.

Examples of Adding Configuration Data for a Component

Adding Configuration Data for a Component 6-11

port
The HTTP port or HTTPS port for administration.

path
The path to the attribute. The path is the dotted name of the attribute in which each
dot (.) is replaced with a slash (/).

For example, the URL to the REST resource for the foo attribute of the wombat-element
element is as follows:

http://localhost:4848/management/domain/configs/config/server-config/
wombat-container-config/wombat-element/foo

In this example, the DAS is running on the local host and the HTTP port for
administration is 4848.

Examples of Adding Configuration Data for a Component
This example shows the interfaces that define the configuration data for the Greeter
Container component. The data is comprised of the following elements:

■ A parent element, which is shown in Example 6–11

■ A subelement that is contained by the parent element, which is shown in
Example 6–12

This example also shows an XML data fragment for initializing an element. See
Example 6–13.

Code for the Greeter Container component is shown in Example of Adding Container
Capabilities.

Code for an asadmin subcommand that updates the configuration data in this example
is shown in Example 4–7.

Example 6–11 Parent Element Definition

This example shows the definition of the greeter-container-config element. The
attributes of the greeter-container-config element are as follows:

■ number-of-instances, which must be in the range 1-10.

■ language, which must contain only non-whitespace characters.

■ style, which must contain only non-whitespace characters.

The greeter-element element is identified as a subelement of the
greeter-container-config element. The definition of the greeter-element element is
shown in Example 6–12.

package org.glassfish.examples.extension.greeter.config;

import org.jvnet.hk2.config.Configured;
import org.jvnet.hk2.config.Attribute;
import org.jvnet.hk2.config.Element;
import org.glassfish.api.admin.config.Container;

import javax.validation.constraints.Pattern;
import javax.validation.constraints.Min;
import javax.validation.constraints.Max;

import java.beans.PropertyVetoException;

Examples of Adding Configuration Data for a Component

6-12 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

@Configured
public interface GreeterContainerConfig extends Container {

 @Attribute
 @Min(value=1)
 @Max (value=10)
 public String getNumberOfInstances();
 public void setNumberOfInstances(String instances) throws
PropertyVetoException;

 @Attribute
 @Pattern(regexp = "^[\\S]*$")
 public String getLanguage();
 public void setLanguage(String language) throws PropertyVetoException;

 @Attribute
 @Pattern(regexp = "^[\\S]*$")
 public String getStyle();
 public void setStyle(String style) throws PropertyVetoException;

 @Element
 public GreeterElement getElement();
 public void setElement(GreeterElement element) throws PropertyVetoException;

}

Example 6–12 Subelement Definition

This example shows the definition of the greeter-element element, which is
identified as a subelement of the greeter-container-config element in
Example 6–11. The only attribute of the greeter-element element is greeter-port,
which must be in the range 1030-1050.

package org.glassfish.examples.extension.greeter.config;

import org.jvnet.hk2.config.ConfigBeanProxy;
import org.jvnet.hk2.config.Configured;
import org.jvnet.hk2.config.Attribute;

import javax.validation.constraints.Min;
import javax.validation.constraints.Max;

import java.beans.PropertyVetoException;

@Configured
public interface GreeterElement extends ConfigBeanProxy {

 @Attribute
 @Min(value=1030)
 @Max (value=1050)
 public String getGreeterPort();
 public void setGreeterPort(String greeterport) throws PropertyVetoException;

}

Examples of Adding Configuration Data for a Component

Adding Configuration Data for a Component 6-13

Example 6–13 XML Data Fragment for Initializing the greeter-container-config Element

This example shows the XML data fragment for adding the
greeter-container-config element to the domain.xml file. The
greeter-container-config element contains the subelement greeter-element.

The attributes of greeter-container-config are initialized as follows:

■ The number-of-instances attribute is set to 5.

■ The language attribute is set to norsk.

■ The style element is set to formal.

The greeter-port attribute of the greeter-element element is set to 1040.

<greeter-container-config number-of-instances="5" language="norsk" style="formal">
 <greeter-element greeter-port="1040"/>
</greeter-container-config>

The definition of the greeter-container-config element is shown in Example 6–11.
The definition of the greeter-element element is shown in Example 6–12.

Examples of Adding Configuration Data for a Component

6-14 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

7

Adding Container Capabilities 7-1

7Adding Container Capabilities

Applications run on GlassFish Server in containers. GlassFish Server enables you to
create containers that extend or replace the existing containers of GlassFish Server.
Adding container capabilities enables you to run new types of applications and to
deploy new archive types in GlassFish Server.

The following topics are addressed here:

■ Creating a Container Implementation

■ Adding an Archive Type

■ Creating Connector Modules

■ Example of Adding Container Capabilities

Creating a Container Implementation
To implement a container that extends or replaces a service in GlassFish Server, you
must create a Java programming language class that includes the following
characteristics:

■ It is annotated with the org.jvnet.hk2.annotations.Service annotation.

■ It implements the org.glassfish.api.container.Container interface.

Marking the Class With the @Service Annotation
Add a com.jvnet.hk2.annotations.Service annotation at the class definition level to
identify your class as a service implementation.

@Service
public class MyContainer implements Container {
...
}

To avoid potential name collisions with other containers, use the fully qualified class
name of your container class in the @Service annotation's name element:

package com.example.containers;
...

@Service(name="com.example.containers.MyContainer")
public class MyContainer implements Container {
...
}

Creating a Container Implementation

7-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

Implementing the Container Interface
The org.glassfish.api.container.Container interface is the contract that defines a
container implementation. Classes that implement Container can extend or replace the
functionality in GlassFish Server by allowing applications to be deployed and run
within the GlassFish Server runtime.

The Container interface consists of two methods, getDeployer and getName. The
getDeployer method returns an implementation class of the
org.glassfish.api.deployment.Deployer interface capable of managing applications
that run within this container. The getName method returns a human-readable name
for the container, and is typically used to display messages belonging to the container.

The Deployer interface defines the contract for managing a particular application that
runs in the container. It consists of the following methods:

getMetaData
Retrieves the metadata used by the Deployer instance, and returns an
org.glassfish.api.deployment.MetaData object.

loadMetaData
Loads the metadata associated with an application.

prepare
Prepares the application to run in GlassFish Server.

load
Loads a previously prepared application to the container.

unload
Unloads or stops a previously loaded application.

clean
Removes any artifacts generated by an application during the prepare phase.

The DeploymentContext is the usual context object passed around deployer instances
during deployment.

Example 7–1 Example Implementation of Container

This example shows a Java programming language class that implements the
Container interface and is capable of extending the functionality of GlassFish Server.

package com.example.containers;
contains
@Service(name="com.example.containers.MyContainer")
public class MyContainer implements Container {
 public String getName() {
 return "MyContainer";
 }

 public Class<? extends org.glassfish.api.deployment.Deployer> getDeployer() {
 return MyDeployer.class;
 }
}

Example 7–2 Example Implementation of Deployer

package com.example.containers;

Adding an Archive Type

Adding Container Capabilities 7-3

@Service
public class MyDeployer {

 public MetaData getMetaData() {
 return new MetaData(...);
 }

 public <V> v loadMetaData(Class<V> type, DeploymentContext dc) {
 ...
 }

 public boolean prepare(DeploymentContext dc) {
 // performs any actions needed to allow the application to run,
 // such as generating artifacts
 ...
 }

 public MyApplication load(MyContainer container, DeploymentContext dc) {
 // creates a new instance of an application
 MyApplication myApp = new MyApplication (...);
 ...
 // returns the application instance
 return myApp;
 }

 public void unload(MyApplication myApp, DeploymentContext dc) {
 // stops and removes the application
 ...
 }

 public void clean (DeploymentContext dc) {
 // cleans up any artifacts generated during prepare()
 ...
 }
}

Adding an Archive Type
An archive type is an abstraction of the archive file format. An archive type can be
implemented as a plain JAR file, as a directory layout, or a custom type. By default,
GlassFish Server recognizes JAR based and directory based archive types. A new
container might require a new archive type.

There are two sub-interfaces of the org.glassfish.api.deployment.archive.Archive
interface, org.glassfish.api.deployment.archive.ReadableArchive and
org.glassfish.api.deployment.archive.WritableArchive. Typically developers of
new archive types will provide separate implementations of ReadableArchive and
WritableArchive, or a single implementation that implements both ReadableArchive
and WritableArchive.

Implementations of the ReadableArchive interface provide read access to an archive
type. ReadableArchive defines the following methods:

getEntry(String name)
Returns a java.io.InputStream for the specified entry name, or null if the entry
doesn't exist.

Adding an Archive Type

7-4 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

exists(String name)
Returns a boolean value indicating whether the specified entry name exists.

getEntrySize(String name)
Returns the size of the specified entry as a long value.

open(URI uri)
Returns an archive for the given java.net.URI.

getSubArchive(String name)
Returns an instance of ReadableArchive for the specified sub-archive contained within
the parent archive, or null if no such archive exists.

exists()
Returns a boolean value indicating whether this archive exists.

delete()
Deletes the archive, and returns a boolean value indicating whether the archive has
been successfully deleted.

renameTo(String name)
Renames the archive to the specified name, and returns a boolean value indicating
whether the archive has been successfully renamed.

Implementations of the WritableArchive interface provide write access to the archive
type. WritableArchive defines the following methods:

create(URI uri)
Creates a new archive with the given path, specified as a java.net.URI.

closeEntry(WritableArchive subArchive)
Closes the specified sub-archive contained within the parent archive.

closeEntry()
Closes the current entry.

createSubArchive(String name)
Creates a new sub-archive in the parent archive with the specified name, and returns it
as a WritableArchive instance.

putNextEntry(String name)
Creates a new entry in the archive with the specified name, and returns it as a
java.io.OutputStream.

Implementing the ArchiveHandler Interface
An archive handler is responsible for handling the particular layout of an archive. Java
EE defines a set of archives (WAR, JAR, and RAR, for example), and each of these
archives has an ArchiveHandler instance associated with the archive type.

Each layout should have one handler associated with it. There is no extension point
support at this level; the archive handler's responsibility is to give access to the classes
and resources packaged in the archive, and it should not contain any container-specific
code. The java.lang.ClassLoader returned by the handler is used by all the
containers in which the application will be deployed.

ArchiveHandler defines the following methods:

Creating Connector Modules

Adding Container Capabilities 7-5

getArchiveType()
Returns the name of the archive type as a String. Typically, this is the archive
extension, such as jar or war.

getDefaultApplicationName(ReadableArchive archive)
Returns the default name of the specified archive as a String. Typically this default
name is the name part of the URI location of the archive.

handles(ReadableArchive archive)
Returns a boolean value indicating whether this implementation of ArchiveHandler
can work with the specified archive.

getClassLoader(DeploymentContext dc)
Returns a java.lang.ClassLoader capable of loading all classes from the archive
passed in by the DeploymentContext instance. Typically the ClassLoader will load
classes in the scratch directory area, returned by
DeploymentContext.getScratchDir(), as stubs and other artifacts are generated in the
scratch directory.

expand(ReadableArchive source, WritableArchive target)
Prepares the ReadableArchivesource archive for loading into the container in a format
the container accepts. Such preparation could be to expand a compressed archive, or
possibly nothing at all if the source archive format is already in a state that the
container can handle. This method returns the archive as an instance of
WritableArchive.

Creating Connector Modules
Connector modules are small add-on modules that consist of application "sniffers" that
associate application types with containers that can run the application type. GlassFish
Server connector modules are separate from the associated add-on module that
delivers the container implementation to allow GlassFish Server to dynamically install
and configure containers on demand.

When a deployment request is received by the GlassFish Server runtime:

1. The current Sniffer implementations are used to determine the application type.

2. Once an application type is found, the runtime looks for a running container
associated with that application type. If no running container is found, the runtime
attempts to install and configure the container associated with the application type
as defined by the Sniffer implementation.

3. The Deployer interface is used to prepare and load the implementation.

Associating File Types With Containers by Using the Sniffer Interface
Containers do not necessarily need to be installed on the local machine for GlassFish
Server to recognize the container's application type. GlassFish Server uses a "sniffer"
concept to study the artifacts in a deployment request and to choose the associated
container that handles the application type that the user is trying to deploy. To create
this association, create a Java programming language class that implements the
org.glassfish.api.container.Sniffer interface. This implementation can be as
simple as looking for a specific file in the application's archive (such as the presence of
WEB-INF/web.xml), or as complicated as running an annotation scanner to determine
an XML-less archive (such as enterprise bean annotations in a JAR file). A Sniffer
implementation must be as small as possible and must not load any of the container's
runtime classes.

Creating Connector Modules

7-6 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

A simple version of a Sniffer implementation uses the handles method to check the
existence of a file in the archive that denotes the application type (as WEB-INF/web.xml
denotes a web application). Once a Sniffer implementation has detected that it can
handle the deployment request artifact, GlassFish Server calls the setUp method. The
setUp method is responsible for setting up the container, which can involve one or
more of the following actions:

■ Downloading the container's runtime (the first time that a container is used)

■ Installing the container's runtime (the first time that a container is used)

■ Setting up one or more repositories to access the runtime's classes (these are
implementations of the HK2 com.sun.enterprise.module.Repository interface,
such as the com.sun.enterprise.module.impl.DirectoryBasedRepository class)

The setUp method returns an array of the com.sun.enterprise.module.Module objects
required by the container.

The Sniffer interface defines the following methods:

handles(ReadableArchive source, ClassLoader loader)
Returns a boolean value indicating whether this Sniffer implementation can handle
the specified archive.

getURLPatterns()
Returns a String array containing all URL patterns to apply against the request URL.
If a pattern matches, the service method of the associated container is invoked.

getAnnotationTypes()
Returns a list of annotation types recognized by this Sniffer implementation. If an
application archive contains one of the returned annotation types, the deployment
process invokes the container's deployers as if the handles method had returned true.

getModuleType()
Returns the module type associated with this Sniffer implementation as a String.

setup(String containerHome, Logger logger)
Sets up the container libraries so that any dependent bundles from the connector JAR
file will be made available to the HK2 runtime. The setup method returns an array of
com.sun.enterprise.module.Module classes, which are definitions of container
implementations. GlassFish Server can then load these modules so that it can create an
instance of the container's Deployer or Container implementations when it needs to.
The module is locked as long as at least one module is loaded in the associated
container.

teardown()
Removes a container and all associated modules in the HK2 modules subsystem.

getContainerNames()
Returns a String array containing the Container implementations that this Sniffer
implementation enables.

isUserVisible()
Returns a boolean value indicating whether this Sniffer implementation should be
visible to end-users.

getDeploymentConfigurations(final ReadableArchive source)
Returns a Map<String, String> of deployment configuration names to configurations
from this Sniffer implementation for the specified application (the archive source).

Example of Adding Container Capabilities

Adding Container Capabilities 7-7

The names are created by GlassFish Server; the configurations are the names of the
files that contain configuration information (for example, WEB-INF/web.xml and
possibly WEB-INF/sun-web.xml for a web application). If the
getDeploymentConfigurations method encounters errors while searching or reading
the specified archive source, it throws a java.io.IOException.

Making Sniffer Implementations Available to the GlassFish Server
Package Sniffer implementation code into modules and install the modules in the
as-install/modules directory. GlassFish Server will automatically discover these
modules. If an administrator installs connector modules that containSniffer
implementations while GlassFish Server is running, GlassFish Server will pick them
up at the next deployment request.

Example of Adding Container Capabilities
This example shows a custom container and a web client of the container. The example
is comprised of the following code:

■ Code for the container, which is shown in Container Component Code

■ Code for a web client of the container, which is shown in Web Client Code

Code that defines the configuration data for the container component is shown in
Examples of Adding Configuration Data for a Component.

Code for an asadmin subcommand that updates the configuration data in this example
is shown in Example 4–7.

Container Component Code
The container component code is comprised of the classes and interfaces that are listed
in the following table. The table also provides a cross-reference to the listing of each
class or interface.

Example 7–3 Annotation to Denote a Container's Component

This example shows the code for defining a component of the Greeter container.

package org.glassfish.examples.extension.greeter;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

/**
 * Simple annotation to denote Greeter's component
 */
@Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
public @interface Greeter {

Class or Interface Listing

Greeter Example 7–3

GreeterContainer Example 7–4

GreeterContainer Example 7–5

GreeterDeployer Example 7–6

GreeterSniffer Example 7–7

Example of Adding Container Capabilities

7-8 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

 /**
 * Name to uniquely identify different greeters
 *
 * @return a good greeter name
 */
 public String name();
}

Example 7–4 Application Container Class

This example shows the Java language class GreeterAppContainer, which implements
the ApplicationContainer interface.

package org.glassfish.examples.extension.greeter;

import org.glassfish.api.deployment.ApplicationContainer;
import org.glassfish.api.deployment.ApplicationContext;
import org.glassfish.api.deployment.archive.ReadableArchive;

import java.util.List;
import java.util.ArrayList;

public class GreeterAppContainer implements ApplicationContainer {

 final GreeterContainer ctr;
 final List<Class> componentClasses = new ArrayList<Class>();

 public GreeterAppContainer(GreeterContainer ctr) {
 this.ctr = ctr;
 }

 void addComponent(Class componentClass) {
 componentClasses.add(componentClass);
 }

 public Object getDescriptor() {
 return null;
 }

 public boolean start(ApplicationContext startupContext) throws Exception {
 for (Class componentClass : componentClasses) {
 try {
 Object component = componentClass.newInstance();
 Greeter greeter = (Greeter)
 componentClass.getAnnotation(Greeter.class);
 ctr.habitat.addComponent(greeter.name(), component);
 } catch(Exception e) {
 throw new RuntimeException(e);
 }
 }
 return true;
 }

 public boolean stop(ApplicationContext stopContext) {
 for (Class componentClass : componentClasses) {
 ctr.habitat.removeAllByType(componentClass);
 }
 return true;
 }

Example of Adding Container Capabilities

Adding Container Capabilities 7-9

 public boolean suspend() {
 return false;
 }

 public boolean resume() throws Exception {
 return false;
 }

 public ClassLoader getClassLoader() {
 return null;
 }
}

Example 7–5 Container Class

This example shows the Java language class GreeterContainer, which implements the
Container interface.

package org.glassfish.examples.extension.greeter;

import org.glassfish.api.container.Container;
import org.glassfish.api.deployment.Deployer;
import org.jvnet.hk2.annotations.Service;
import org.jvnet.hk2.annotations.Inject;
import org.jvnet.hk2.component.Habitat;

@Service(name="org.glassfish.examples.extension.GreeterContainer")
public class GreeterContainer implements Container {

 @Inject
 Habitat habitat;

 public Class<? extends Deployer> getDeployer() {
 return GreeterDeployer.class;
 }

 public String getName() {
 return "greeter";
 }
}

Example 7–6 Deployer Class

This example shows the Java language class GreeterDeployer, which implements the
Deployer interface.

package org.glassfish.examples.extension.greeter;

import org.glassfish.api.deployment.Deployer;
import org.glassfish.api.deployment.MetaData;
import org.glassfish.api.deployment.DeploymentContext;
import org.glassfish.api.deployment.ApplicationContainer;
import org.glassfish.api.deployment.archive.ReadableArchive;
import org.glassfish.api.container.Container;
import org.jvnet.hk2.annotations.Service;

import java.util.Enumeration;

@Service

Example of Adding Container Capabilities

7-10 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

public class GreeterDeployer
 implements Deployer<GreeterContainer, GreeterAppContainer> {

 public MetaData getMetaData() {
 return null;
 }

 public <V> V loadMetaData(Class<V> type, DeploymentContext context) {
 return null;
 }

 public boolean prepare(DeploymentContext context) {
 return false;
 }

 public GreeterAppContainer load(
 GreeterContainer container, DeploymentContext context) {

 GreeterAppContainer appCtr = new GreeterAppContainer(container);
 ClassLoader cl = context.getClassLoader();

 ReadableArchive ra = context.getOriginalSource();
 Enumeration<String> entries = ra.entries();
 while (entries.hasMoreElements()) {
 String entry = entries.nextElement();
 if (entry.endsWith(".class")) {
 String className = entryToClass(entry);
 try {
 Class componentClass = cl.loadClass(className);
 // ensure it is one of our component
 if (componentClass.isAnnotationPresent(Greeter.class)) {
 appCtr.addComponent(componentClass);
 }
 } catch(Exception e) {
 throw new RuntimeException(e);
 }

 }
 }
 return appCtr;
 }

 public void unload(GreeterAppContainer appContainer, DeploymentContext
context) {

 }

 public void clean(DeploymentContext context) {

 }

 private String entryToClass(String entry) {
 String str = entry.substring("WEB-INF/classes/".length(),
entry.length()-6);
 return str.replaceAll("/", ".");
 }
}

Example of Adding Container Capabilities

Adding Container Capabilities 7-11

Example 7–7 Sniffer Class

This example shows the Java language class GreeterSniffer, which implements the
Sniffer interface.

package org.glassfish.examples.extension.greeter;

import org.glassfish.api.container.Sniffer;
import org.glassfish.api.deployment.archive.ReadableArchive;
import org.glassfish.api.admin.config.ConfigParser;
import org.glassfish.examples.extension.greeter.config.GreeterContainerConfig;
import org.jvnet.hk2.annotations.Service;
import org.jvnet.hk2.annotations.Inject;
import org.jvnet.hk2.component.Habitat;
import com.sun.enterprise.module.Module;

import java.util.logging.Logger;
import java.util.Map;
import java.io.IOException;
import java.lang.annotation.Annotation;
import java.lang.reflect.Array;
import java.net.URL;

/**
 * @author Jerome Dochez
 */
@Service(name="greeter")
public class GreeterSniffer implements Sniffer {

 @Inject(optional=true)
 GreeterContainerConfig config=null;

 @Inject
 ConfigParser configParser;

 @Inject
 Habitat habitat;

 public boolean handles(ReadableArchive source, ClassLoader loader) {
 return false;
 }

 public String[] getURLPatterns() {
 return new String[0];
 }

 public Class<? extends Annotation>[] getAnnotationTypes() {
 Class<? extends Annotation>[] a = (Class<? extends Annotation>[])
Array.newInstance(Class.class, 1);
 a[0] = Greeter.class;
 return a;
 }

 public String getModuleType() {
 return "greeter";
 }

 public Module[] setup(String containerHome, Logger logger) throws IOException
{
 if (config==null) {
 URL url = this.getClass().getClassLoader().getResource("init.xml");

Example of Adding Container Capabilities

7-12 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

 if (url!=null) {
 configParser.parseContainerConfig(
 habitat, url, GreeterContainerConfig.class);
 }
 }
 return null;
 }

 public void tearDown() {

 }

 public String[] getContainersNames() {
 String[] c = { GreeterContainer.class.getName() };
 return c;
 }

 public boolean isUserVisible() {
 return true;
 }

 public Map<String, String> getDeploymentConfigurations
 (ReadableArchive source) throws IOException {
 return null;
 }

 public String[] getIncompatibleSnifferTypes() {
 return new String[0];
 }
}

Web Client Code
The web client code is comprised of the classes and resources that are listed in the
following table. The table also provides a cross-reference to the listing of each class or
resource.

Example 7–8 Container Client Class

import components.SimpleGreeter;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.annotation.WebServlet;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.annotation.Resource;

@WebServlet(urlPatterns={"/hello"})
public class HelloWorld extends HttpServlet {

Class or Resource Listing

HelloWorld Example 7–8

SimpleGreeter Example 7–9

Deployment descriptor Example 7–10

Example of Adding Container Capabilities

Adding Container Capabilities 7-13

 @Resource(name="Simple")
 SimpleGreeter greeter;

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException {

 PrintWriter pw = res.getWriter();
 try {
 pw.println("Injected service is " + greeter);
 if (greeter!=null) {
 pw.println("SimpleService says " + greeter.saySomething());
 pw.println("
");
 }
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Example 7–9 Component for Container Client

package components;

import org.glassfish.examples.extension.greeter.Greeter;

@Greeter(name="simple")
public class SimpleGreeter {

 public String saySomething() {
 return "Bonjour";
 }
}

Example 7–10 Deployment Descriptor for Container Client

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/ Line
break added for readability
xml/ns/javaee/web-app_2_5.xsd">
</web-app>

Example of Adding Container Capabilities

7-14 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

8

Creating a Session Persistence Module 8-1

8Creating a Session Persistence Module

GlassFish Server enables you to create a session persistence module in the web
container for high availability-related functionality by implementing the
PersistenceStrategyBuilder interface . Using the PersistenceStrategyBuilder
interface in an HK2 service makes the session manager extensible because you can
implement a new persistence type without having to modify the web container code.

For information about other high-availability, session persistence solutions, see
"Configuring High Availability Session Persistence and Failover" in GlassFish Server
Open Source Edition High Availability Administration Guide.

Implementing the PersistenceStrategyBuilder Interface
You can implement the PersistenceStrategyBuilder interface by creating a new web
session manager type.

package com.sun.enterprise.web;

import com.sun.enterprise.deployment.runtime.web.SessionManager;
import org.apache.catalina.Context;
import org.jvnet.hk2.annotations.Contract;

@Contract
public interface PersistenceStrategyBuilder {

 public void initializePersistenceStrategy(
 Context ctx,
 SessionManager smBean,
 ServerConfigLookup serverConfigLookup);

 public void setPersistenceFrequency(String persistenceFrequency);

 public void setPersistenceScope(String persistenceScope);

 public void setPassedInPersistenceType(String persistenceType);
}

Here is an example of how to implement the PersistenceStrategyBuilder interface
by creating a new web session manager and setting a store for it:

@Service(name="xyz")
public class XYZStrategyBuilder implements PersistenceStrategyBuilder {

Implementing the PersistenceStrategyBuilder Interface

8-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

 private String persistenceFrequency = null;
 private String persistenceScope = null;
 private String persistenceType = null;

 public void init(StandardContext ctx, SessionManager sessionManager,
 ServerConfigLookup serverConfigLookup) {
 // add listeners, valves, etc. to the ctx
 // Set the manager and store
 }

 public void setPersistenceFrequency(String persistenceFrequency) {
 this.persistenceFrequency = persistenceFrequency;
 }

 public void setPersistenceScope(String persistenceScope) {
 this.persistenceScope = persistenceScope;
 }

 public void setPassedInPersistenceType(String persistenceType) {
 this.passedInPersistenceType = persistenceType;
 }
}

If a Manager is provided, then it will be used in GlassFish Server.

Example 8–1 Implementing PersistenceStrategyBuilder With a Custom Web Session
Manager

This example defines a session manager type that is named MyHASolution.

@Service(name="MyHASolution")
public class MyHASolutionStrategyBuilder implements PersistenceStrategyBuilder {

 private String persistenceFrequency = null;
 private String persistenceScope = null;
 private String persistenceType = null;

 public void init(StandardContext ctx, SessionManager sessionManager,
 ServerConfigLookup serverConfigLookup) {
 // add listeners, valves, etc. to the ctx
 // Set the manager and store
 MyManager myManager = new MyManager(persistenceType,
persistenceFrequency);
 // (You could also make this a service and look it up in the habitat.
 // For simplicity we are just doing a new implementation of the class
here.)
 MyStore store = new MyStore();
 myManager.setStore(store);
 ctx.setManager(myManager);
 }

 public void setPersistenceFrequency(String persistenceFrequency) {

Note: If a backing store is required, it is the responsibility of the
Manager to make sure that the findSession method correctly uses
the Store that the Manager provides.

Implementing the PersistenceStrategyBuilder Interface

Creating a Session Persistence Module 8-3

 this.persistenceFrequency = persistenceFrequency;
 }

 public void setPersistenceScope(String persistenceScope) {
 this.persistenceScope = persistenceScope;
 }

 public void setPassedInPersistenceType(String persistenceType) {
 this.passedInPersistenceType = persistenceType;

 }

}

Example 8–2 Session Manager Configuration in the glassfish-web.xml File

This example sets the persistence-type attribute of the session-manager element of
glassfish-web.xml to myHASolution

Based on the domain.xml and glassfish-web.xml settings, the web container looks up
the appropriate PersistenceStrategyBuilder interface in the Habitat and uses it.

 <glassfish-web-app>
 <session-config>
 <session-manager persistence-type="myHASolution"/>
 <session-config>
 <glassfish-web-app>

Implementing the PersistenceStrategyBuilder Interface

8-4 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

9

Packaging, Integrating, and Delivering an Add-On Component 9-1

9Packaging, Integrating, and Delivering an
Add-On Component

Packaging an add-on component enables the component to interact with the GlassFish
Server kernel in the same way as other components. Integrating a component with
GlassFish Server enables GlassFish Server to discover the component at runtime. If an
add-on component is an extension or update to existing installations of GlassFish
Server, deliver the component through Update Tool.

The following topics are addressed here:

■ Packaging an Add-On Component

■ Integrating an Add-On Component With GlassFish Server

■ Delivering an Add-On Component Through Update Tool

Packaging an Add-On Component
To enable an add-on component to plug in to the GlassFish Server kernel in the same
way as other components, package the component as an OSGi bundle.

A bundle is the unit of deployment in the OSGi module management subsystem. To
package a component as an OSGi bundle, package the component's constituent files in
a Java archive (JAR) file with appropriate manifest entries. The manifest entries
provide information about the component that is required to enable the component to
be plugged into the GlassFish Server kernel, such as:

■ Name

■ Version

■ Dependencies

■ Capabilities

Integrating an Add-On Component With GlassFish Server
Integrating an add-on component with GlassFish Server enables GlassFish Server to
discover the component at runtime. To integrate an add-on component with GlassFish
Server, ensure that the JAR file that contains the component is copied to or installed in
the as-install/modules/ directory.

Delivering an Add-On Component Through Update Tool

9-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

Delivering an Add-On Component Through Update Tool
If an add-on component is an extension or update to existing installations of GlassFish
Server, deliver the component through Update Tool. To deliver an add-on component
through Update Tool, create an Image Packaging System (IPS) package to contain the
component and add the package to a suitable IPS package repository.

For information about how to create IPS packages, see the IPS best practices document
(http://wikis.oracle.com/display/IpsBestPractices/).

A

Integration Point Reference A-1

AIntegration Point Reference

This appendix provides reference information about integration points, which are
described in Extending the Administration Console. For complete information about
integration points, see
https://wikis.oracle.com/display/GlassFish/V3IntegrationPoint.

Define an integration point for each user interface feature in the console-config.xml
file for your add-on component.

The following topics are addressed here:

■ Integration Point Attributes

■ org.glassfish.admingui:navNode Integration Point

■ org.glassfish.admingui:rightPanel Integration Point

■ org.glassfish.admingui:rightPanelTitle Integration Point

■ org.glassfish.admingui:serverInstTab Integration Point

■ org.glassfish.admingui:commonTask Integration Point

■ org.glassfish.admingui:configuration Integration Point

■ org.glassfish.admingui:resources Integration Point

■ org.glassfish.admingui:customtheme Integration Point

■ org.glassfish.admingui:masthead Integration Point

■ org.glassfish.admingui:loginimage Integration Point

■ org.glassfish.admingui:loginform Integration Point

■ org.glassfish.admingui:versioninfo Integration Point

Integration Point Attributes
For each integration-point element, specify the following attributes. Each attribute
takes a string value.

id
An identifier for the integration point. The remaining sections of this appendix do not
provide details about specifying this attribute.

parentId
The ID of the integration point's parent.

org.glassfish.admingui:navNode Integration Point

A-2 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

type
The type of the integration point.

priority
A numeric value that specifies the relative ordering of integration points with the same
parentId. A lower number specifies a higher priority (for example, 100 represents a
higher priority than 400). You may need to experiment in order to place the integration
point where you want it. This attribute is optional.

content
A relative path to the JavaServer Faces page that contains the content to be integrated.
Typically, the file contains a JavaServer Faces code fragment that is incorporated into a
page. The code fragment often specifies a link to another JavaServer Faces page that
appears when a user clicks the link.

org.glassfish.admingui:navNode Integration Point
Use an org.glassfish.admingui:navNode integration point to insert a node in the
Administration Console navigation tree. Specify the attributes and their content as
follows.

type
org.glassfish.admingui:navNode, the left-hand navigation tree

parentId
The id value of the navNode that is the parent for this node. The parentId can be any
of the following:

tree
The root node of the entire navigation tree. Use this value to place your node at the
top level of the tree. You can then use the id of this node to create additional nodes
beneath it.

registration
The Registration node

applicationServer
The GlassFish Server node

applications
The Applications node

resources
The Resources node

configuration
The Configuration node

webContainer
The Web Container node under the Configuration node

httpService
The HTTP Service node under the Configuration node

org.glassfish.admingui:rightPanelTitle Integration Point

Integration Point Reference A-3

priority
A numeric value that specifies the relative ordering of the node on the tree, whether at
the top level or under another node.

content
A relative path to the JavaServer Faces page that contains the content to be integrated,
or a URL to an external resource that returns the appropriate data structure for
inclusion.

For an example, see Example 3–2.

org.glassfish.admingui:rightPanel Integration Point
Use an org.glassfish.admingui:rightPanel integration point to specify content for
the right frame of the Administration Console. Specify the attributes and their content
as follows.

type
org.glassfish.admingui:rightPanel

parentId
None.

priority
A numeric value that specifies the relative ordering. If multiple plug-ins specify
content for the right frame, the one with greater priority will take precedence.

content
A path relative to the root of the plug-in JAR file to a file containing the content for the
right panel. Alternatively, it may contain a full URL which will deliver the content for
the right panel.

org.glassfish.admingui:rightPanelTitle Integration Point
Use an org.glassfish.admingui:rightPanel integration point to specify the title for
the right frame of the Administration Console. Specify the attributes and their content
as follows.

type
org.glassfish.admingui:rightPanelTitle

parentId
None.

priority
A numeric value that specifies the relative ordering. If multiple plug-ins specify
content for the right frame, the one with greater priority will take precedence.

content
Specifies the title to display at the top of the right panel.

Note: The webContainer and httpService nodes are available
only if you installed the web container module for the
Administration Console (the console-web-gui.jar OSGi bundle).

org.glassfish.admingui:serverInstTab Integration Point

A-4 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

org.glassfish.admingui:serverInstTab Integration Point
Use an org.glassfish.admingui:serverInstTab integration point to place an
additional tab on the GlassFish Server page of the Administration Console. Specify the
attributes and their content as follows.

type
org.glassfish.admingui:serverInstTab

parentId
The id value of the tab set that is the parent for this tab. For a top-level tab on this
page, this value is serverInstTabs, the tab set that contains the general information
property pages for GlassFish Server.

For a sub-tab, the value is the id value for the parent tab.

priority
A numeric value that specifies the relative ordering of the tab on the page, whether at
the top level or under another tab.

content
A relative path to the JavaServer Faces page that contains the content to be integrated.

When you use this integration point, your JavaServer Faces page must call the
setSessionAttribute handler for the command event to set the session variable of the
serverInstTabs tab set to the id value of your tab. For example, the file may have the
following content:

<sun:tab id="sampletab" immediate="true" text="Sample First Tab">
 <!command
 setSessionAttribute(key="serverInstTabs" value="sampleTab");

gf.redirect(page="#{request.contextPath}/page/tabPage.jsf?name=Sample%20First%20Ta
b");
 />
</sun:tab>

The id of the sun:tab custom tag must be the same as the value argument of the
setSessionAttribute handler.

For examples, see Example 3–4 and Example 3–5.

org.glassfish.admingui:commonTask Integration Point
Use an org.glassfish.admingui:commonTask integration point to place a new task or
task group on the Common Tasks page of the Administration Console. Specify the
attributes and their content as follows.

type
org.glassfish.admingui:commonTask

parentId
If you are adding a task group, the id value of the Common Tasks page, which is
commonTasksSection.

If you are adding a single task, the id value of the task group that is the parent for this
tab, such as deployment (for the Deployment group).

org.glassfish.admingui:resources Integration Point

Integration Point Reference A-5

priority
A numeric value that specifies the relative ordering of the tab on the page, whether at
the top level or under another tab.

content
A relative path to the JavaServer Faces page that contains the content to be integrated.

For examples, see Example 3–7 and Example 3–9.

org.glassfish.admingui:configuration Integration Point
Use an org.glassfish.admingui:configuration integration point to add a
component to the Configuration page of the Administration Console. Typically, you
add a link to the property sheet section of this page. Specify the attributes and their
content as follows.

type
org.glassfish.admingui:configuration

parentId
The id value of the property sheet for the Configuration page. This value is
propSheetSection, the section that contains the property definitions for the
Configuration page.

priority
A numeric value that specifies the relative ordering of the item on the Configuration
page.

content
A relative path to the JavaServer Faces page that contains the content to be integrated.

org.glassfish.admingui:resources Integration Point
Use an org.glassfish.admingui:resources integration point to add a component to
the Resources page of the Administration Console. Typically, you add a link to the
property sheet section of this page. Specify the attributes and their content as follows.

type
org.glassfish.admingui:resources

parentId
The id value of the property sheet for the Resources page. This value is
propSheetSection, the section that contains the property definitions for the Resources
page.

priority
A numeric value that specifies the relative ordering of the item on the Resources page.

content
A relative path to the JavaServer Faces page that contains the content to be integrated.

For an example, see Example 3–11.

org.glassfish.admingui:customtheme Integration Point

A-6 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

org.glassfish.admingui:customtheme Integration Point
Use an org.glassfish.admingui:customtheme integration point to add your own
branding to the Administration Console. Specify the attributes and their content as
follows. Do not specify a parentId attribute for this integration point.

type
org.glassfish.admingui:customtheme

priority
A numeric value that specifies the relative ordering of the item in comparison to other
themes. This value must be between 1 and 100. The theme with the smallest number is
used first.

content
The name of the properties file that contains the key/value pairs that will be used to
access your theme JAR file. You must specify the following keys:

com.sun.webui.theme.DEFAULT_THEME
Specifies the theme name for the theme that this application may depend on.

com.sun.webui.theme.DEFAULT_THEME_VERSION
Specifies the theme version this application may depend on.

For example, the properties file for the default Administration Console brand contains
the following:

com.sun.webui.theme.DEFAULT_THEME=suntheme
com.sun.webui.theme.DEFAULT_THEME_VERSION=4.3

For an example, see Example 3–14.

org.glassfish.admingui:masthead Integration Point
Use an org.glassfish.admingui:masthead integration point to specify the name and
location of the include masthead file, which can be customized with a branding image.
This include file will be integrated on the masthead of the Administration Console.
Specify the attributes and their content as follows. Do not specify a parentId attribute
for this integration point.

type
org.glassfish.admingui:masthead

priority
A numeric value that specifies the relative ordering of the item in comparison to other
items of this type. This value must be between 1 and 100. The theme with the smallest
number is used first.

content
A file that contains the content, typically a file that is included in a JavaServer Faces
page.

For an example, see Example 3–15.

org.glassfish.admingui:loginimage Integration Point
Use an org.glassfish.admingui:loginimage integration point to specify the name
and location of the include file containing the branding login image code that will be

org.glassfish.admingui:versioninfo Integration Point

Integration Point Reference A-7

integrated with the login page of the Administration Console. Specify the attributes
and their content as follows. Do not specify a parentId attribute for this integration
point.

type
org.glassfish.admingui:loginimage

parentId
None; a login image does not have a parent ID.

priority
A numeric value that specifies the relative ordering of the item in comparison to other
items of this type. This value must be between 1 and 100. The theme with the smallest
number is used first.

content
A file that contains the content, typically a file that is included in a JavaServer Faces
page.

For an example, see Example 3–15.

org.glassfish.admingui:loginform Integration Point
Use an org.glassfish.admingui:loginform integration point to specify the name and
location of the include file containing the customized login form code. This code also
contains the login background image used for the login page for the Administration
Console. Specify the attributes and their content as follows. Do not specify a parentId
attribute for this integration point.

type
org.glassfish.admingui:loginform

priority
A numeric value that specifies the relative ordering of the item in comparison to other
items of this type. This value must be between 1 and 100. The theme with the smallest
number is used first.

content
A file that contains the content, typically a file that is included in a JavaServer Faces
page.

For an example, see Example 3–15.

org.glassfish.admingui:versioninfo Integration Point
Use an org.glassfish.admingui:versioninfo integration point to specify the name
and location of the include file containing the branding image that will be integrated
with the content of the version popup window. Specify the attributes and their content
as follows. Do not specify a parentId attribute for this integration point.

type
org.glassfish.admingui:versioninfo

priority
A numeric value that specifies the relative ordering of the item in comparison to other
items of this type. This value must be between 1 and 100. The theme with the smallest
number is used first.

org.glassfish.admingui:versioninfo Integration Point

A-8 GlassFish Server Open Source Edition 3.1.2 Add-On Component Development Guide

content
A file that contains the content, typically a file that is included in a JavaServer Faces
page.

For an example, see Example 3–15.

	Preface
	1 Introduction to the Development Environment for GlassFish Server Add-On Components
	GlassFish Server Modular Architecture and Add-On Components
	OSGi Alliance Module Management Subsystem
	Hundred-Kilobyte Kernel
	Overview of the Development Process for an Add-On Component
	Writing HK2 Components
	Extending the Administration Console
	Extending the asadmin Utility
	Adding Monitoring Capabilities
	Adding Configuration Data for a Component
	Adding Container Capabilities
	Creating a Session Persistence Module
	Packaging and Delivering an Add-On Component

	2 Writing HK2 Components
	HK2 Component Model
	Services in the HK2 Component Model
	HK2 Runtime
	Scopes of Services
	Instantiation of Components in HK2
	HK2 Lifecycle Interfaces

	Inversion of Control
	Injecting HK2 Components
	Instantiation Cascading in HK2

	Identifying a Class as an Add-On Component
	Using the Apache Maven Build System to Develop HK2 Components

	3 Extending the Administration Console
	Administration Console Architecture
	Implementing a Console Provider

	About Administration Console Templates
	About Integration Points
	Specifying the ID of an Add-On Component
	Adding Functionality to the Administration Console
	Adding a Node to the Navigation Tree
	Creating a JavaServer Faces Page for Your Node

	Adding Tabs to a Page
	Creating JavaServer Faces Pages for Your Tabs

	Adding a Task to the Common Tasks Page
	Creating a JavaServer Faces Page for Your Task

	Adding a Task Group to the Common Tasks Page
	Creating a JavaServer Faces Page for Your Task Group

	Adding Content to a Page
	Creating a JavaServer Faces Page for Your Page Content

	Adding a Page to the Administration Console

	Adding Internationalization Support
	Changing the Theme or Brand of the Administration Console
	Creating an Integration Point Type
	To Create an Integration Point Type

	4 Extending the asadmin Utility
	About the Administrative Command Infrastructure of GlassFish Server
	Adding an asadmin Subcommand
	Representing an asadmin Subcommand as a Java Class
	Specifying the Name of an asadmin Subcommand
	Ensuring That an AdminCommand Implementation Is Stateless
	Example of Adding an asadmin Subcommand

	Adding Parameters to an asadmin Subcommand
	Representing a Parameter of an asadmin Subcommand
	Identifying a Parameter of an asadmin Subcommand
	Specifying Whether a Parameter Is an Option or an Operand
	Specifying the Name of an Option
	Specifying the Long Form of an Option Name
	Specifying the Short Form of an Option Name

	Specifying the Acceptable Values of a Parameter
	Specifying the Default Value of a Parameter
	Specifying Whether a Parameter Is Required or Optional
	Example of Adding Parameters to an asadmin Subcommand

	Making asadmin Subcommands Cluster-Aware
	Specifying Allowed Targets
	The Target Utility
	Specifying asadmin Subcommand Execution
	Subcommand Preprocessing and Postprocessing
	Running a Command from Another Command

	Adding Message Text Strings to an asadmin Subcommand
	Enabling an asadmin Subcommand to Run
	Setting the Context of an asadmin Subcommand
	Changing the Brand in the GlassFish Server CLI
	Examples of Extending the asadmin Utility
	Implementing Create, Delete, and List Commands Using Annotations
	Command Patterns
	Resolvers
	The @Create Annotation
	The @Delete Annotation
	The @Listing Annotation
	Create Command Decorators
	Delete Command Decorators
	Specifying Command Execution
	Using Multiple Command Annotations

	5 Adding Monitoring Capabilities
	Defining Statistics That Are to Be Monitored
	Defining an Event Provider
	Defining an Event Provider by Writing a Java Class
	Defining Event Types in an Event Provider Class
	Specifying Event Parameters
	Example of Defining an Event Provider by Writing a Java Class

	Defining an Event Provider by Writing an XML Fragment
	Packaging a Component's Event Providers

	Sending an Event

	Updating the Monitorable Object Tree
	Creating Event Listeners
	Representing a Component's Statistics in an Event Listener Class
	Subscribing to Events From Event Provider Classes
	Registering an Event Listener

	Dotted Names and REST URLs for an Add-On Component's Statistics
	Example of Adding Monitoring Capabilities

	6 Adding Configuration Data for a Component
	How GlassFish Server Stores Configuration Data
	Defining an Element
	To Define an Element

	Defining an Attribute of an Element
	Representing an Attribute of an Element
	Specifying the Data Type of an Attribute
	Identifying an Attribute of an Element
	Specifying the Name of an Attribute
	Specifying the Default Value of an Attribute
	Specifying Whether an Attribute Is Required or Optional
	Example of Defining an Attribute of an Element

	Defining a Subelement
	To Define a Subelement

	Validating Configuration Data
	Initializing a Component's Configuration Data
	To Define a Component's Initial Configuration Data
	To Write a Component's Initial Configuration Data to the domain.xml File

	Creating a Transaction to Update Configuration Data
	To Create a Transaction to Update Configuration Data

	Dotted Names and REST URLs of Configuration Attributes
	Examples of Adding Configuration Data for a Component

	7 Adding Container Capabilities
	Creating a Container Implementation
	Marking the Class With the @Service Annotation
	Implementing the Container Interface

	Adding an Archive Type
	Implementing the ArchiveHandler Interface

	Creating Connector Modules
	Associating File Types With Containers by Using the Sniffer Interface
	Making Sniffer Implementations Available to the GlassFish Server

	Example of Adding Container Capabilities
	Container Component Code
	Web Client Code

	8 Creating a Session Persistence Module
	Implementing the PersistenceStrategyBuilder Interface

	9 Packaging, Integrating, and Delivering an Add-On Component
	Packaging an Add-On Component
	Integrating an Add-On Component With GlassFish Server
	Delivering an Add-On Component Through Update Tool

	A Integration Point Reference
	Integration Point Attributes
	org.glassfish.admingui:navNode Integration Point
	org.glassfish.admingui:rightPanel Integration Point
	org.glassfish.admingui:rightPanelTitle Integration Point
	org.glassfish.admingui:serverInstTab Integration Point
	org.glassfish.admingui:commonTask Integration Point
	org.glassfish.admingui:configuration Integration Point
	org.glassfish.admingui:resources Integration Point
	org.glassfish.admingui:customtheme Integration Point
	org.glassfish.admingui:masthead Integration Point
	org.glassfish.admingui:loginimage Integration Point
	org.glassfish.admingui:loginform Integration Point
	org.glassfish.admingui:versioninfo Integration Point

